Bridging 2D and 3D segmentation networks for computation-efficient volumetric medical image segmentation: An empirical study of 2.5D solutions

计算机科学 分割 过度拟合 人工智能 卷积神经网络 图像分割 推论 医学影像学 尺度空间分割 计算 深度学习 联营 机器学习 模式识别(心理学) 计算机视觉 人工神经网络 算法
作者
Yichi Zhang,Qingcheng Liao,Le Ding,Jicong Zhang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:99: 102088-102088 被引量:64
标识
DOI:10.1016/j.compmedimag.2022.102088
摘要

Recently, deep convolutional neural networks have achieved great success for medical image segmentation. However, unlike segmentation of natural images, most medical images such as MRI and CT are volumetric data. In order to make full use of volumetric information, 3D CNNs are widely used. However, 3D CNNs suffer from higher inference time and computation cost, which hinders their further clinical applications. Additionally, with the increased number of parameters, the risk of overfitting is higher, especially for medical images where data and annotations are expensive to acquire. To issue this problem, many 2.5D segmentation methods have been proposed to make use of volumetric spatial information with less computation cost. Despite these works lead to improvements on a variety of segmentation tasks, to the best of our knowledge, there has not previously been a large-scale empirical comparison of these methods. In this paper, we aim to present a review of the latest developments of 2.5D methods for volumetric medical image segmentation. Additionally, to compare the performance and effectiveness of these methods, we provide an empirical study of these methods on three representative segmentation tasks involving different modalities and targets. Our experimental results highlight that 3D CNNs may not always be the best choice. Despite all these 2.5D methods can bring performance gains to 2D baseline, not all the methods hold the benefits on different datasets. We hope the results and conclusions of our study will prove useful for the community on exploring and developing efficient volumetric medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助ww采纳,获得10
刚刚
求求科研完成签到,获得积分10
刚刚
方方方2015发布了新的文献求助20
刚刚
刚刚
赘婿应助TaoJ采纳,获得10
1秒前
1秒前
hj完成签到,获得积分10
1秒前
苏紫梗桔发布了新的文献求助10
1秒前
2秒前
小墨鱼发布了新的文献求助10
2秒前
Connie完成签到,获得积分10
2秒前
卡卡西西西完成签到,获得积分10
2秒前
2秒前
2秒前
林小乌龟完成签到,获得积分10
3秒前
3秒前
太渊完成签到 ,获得积分10
4秒前
零零tube发布了新的文献求助20
4秒前
hj发布了新的文献求助10
4秒前
tuntunliu发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
ttt完成签到,获得积分10
6秒前
超级鳗吧哈基米完成签到,获得积分10
6秒前
frap完成签到,获得积分0
6秒前
不安的伯云完成签到,获得积分10
6秒前
静默向上发布了新的文献求助10
6秒前
12umi发布了新的文献求助10
6秒前
srrrr完成签到,获得积分10
7秒前
Owen应助小蛇玩采纳,获得10
7秒前
LiverStronger完成签到,获得积分10
7秒前
小张z完成签到,获得积分10
7秒前
小白发布了新的文献求助10
7秒前
小丁发布了新的文献求助10
9秒前
10秒前
充电宝应助阿治采纳,获得10
10秒前
CR7完成签到,获得积分10
11秒前
11秒前
个性凡儿发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730