Evaluation of Data-driven Hybrid Machine Learning Algorithms for Modelling Daily Reference Evapotranspiration

算法 蒸散量 机器学习 数学 RSS 人工智能 计算机科学 统计 生态学 生物 操作系统
作者
Nand Lal Kushwaha,Jitendra Rajput,D.R. Sena,Ahmed Elbeltagi,Danny Singh,Indra Mani
出处
期刊:Atmosphere-ocean [Taylor & Francis]
卷期号:60 (5): 519-540 被引量:30
标识
DOI:10.1080/07055900.2022.2087589
摘要

Reference evapotranspiration (ET0) is one of the crucial variables used for irrigation scheduling, agricultural production, and water balance studies. This study compares six different models with sequential inclusion of six meteorological input variables such as minimum temperature (Tmin), maximum temperature (Tmax), mean relative humidity (RH), wind speed (SW), sunshine hours (HSS), and solar radiation (RS), which are necessarily used in physical or empirical-based models to estimate ET0. Each model utilized three variants of machine learning algorithms, i.e. Additive Regression (AdR), Random Subspace (RSS), M5 Pruning tree (M5P) independently and four novel permutated hybrid combinations of these algorithms. To evaluate the efficacy of these hybridizations and the stability of machine learning models, a comprehensive evaluation of independent and hybrid models was performed. With more input variables, the model performances were found to be superior in terms of prediction accuracies. The model AdR6 that included all the 6 selected meteorological variables outperformed other models during the testing period, exhibiting statistical performance of MAPE (1.30), RMSE (0.07), RAE (2.41), RRSE (3.10), and R2 (0.998). However, the AdR algorithm, alone, was found to capture about 86% of variance in the observed data conforming to the 95% confidence band across all models irrespective of the number of input variables used to predict ET0. The RSS algorithm, in comparison to other algorithms, failed to capture the observed trends even with all the input variables. The hybrid combinations of algorithms with AdR as a constituent were better performers in terms of their prediction accuracies but remained inferior to AdR as an individual performer. All the algorithms are better predictors of the higher values of ET0 that included values beyond the 75% quartile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwb完成签到,获得积分10
刚刚
罗实完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
端庄南莲完成签到,获得积分10
2秒前
taoxz521发布了新的文献求助30
3秒前
3秒前
逍遥剑心发布了新的文献求助10
3秒前
科研通AI2S应助会飞的鱼采纳,获得10
4秒前
Mindray发布了新的文献求助20
5秒前
水凝胶完成签到,获得积分10
6秒前
yyy完成签到,获得积分10
7秒前
深情安青应助扒开皮皮采纳,获得10
8秒前
胖飞飞完成签到,获得积分10
8秒前
文车完成签到,获得积分20
11秒前
舟遥遥完成签到,获得积分10
11秒前
12秒前
虚幻的涵柏完成签到,获得积分10
12秒前
zhenya完成签到,获得积分10
12秒前
13秒前
13秒前
CipherSage应助科研小辣机采纳,获得10
14秒前
优秀扬完成签到,获得积分10
16秒前
16秒前
guozizi发布了新的文献求助80
17秒前
18秒前
zhu完成签到,获得积分10
18秒前
20秒前
lyy完成签到 ,获得积分10
20秒前
芝士椰果完成签到,获得积分10
22秒前
23秒前
高兴的又菡完成签到,获得积分10
24秒前
墨卿发布了新的文献求助10
25秒前
香蕉觅云应助虚心念桃采纳,获得10
25秒前
chenmeimei2012完成签到 ,获得积分10
26秒前
iNk应助涂楚捷采纳,获得20
26秒前
量子星尘发布了新的文献求助10
29秒前
方法法国衣服头发完成签到,获得积分10
30秒前
华仔应助leolee采纳,获得10
30秒前
墨辞完成签到 ,获得积分10
30秒前
30秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864128
求助须知:如何正确求助?哪些是违规求助? 3406440
关于积分的说明 10649850
捐赠科研通 3130426
什么是DOI,文献DOI怎么找? 1726369
邀请新用户注册赠送积分活动 831712
科研通“疑难数据库(出版商)”最低求助积分说明 779992