Application of XGBoost algorithm in the optimization of pollutant concentration

北京 天气研究与预报模式 污染物 环境科学 算法 气象学 污染 计算机科学 硝酸盐 地理 化学 中国 生态学 有机化学 考古 生物
作者
Jiangtao Li,Xingqin An,Qingyong Li,Chao Wang,Haomin Yu,Xinyuan Zhou,Yangli-ao Geng
出处
期刊:Atmospheric Research [Elsevier BV]
卷期号:276: 106238-106238 被引量:99
标识
DOI:10.1016/j.atmosres.2022.106238
摘要

With the rapid development of the economy, urban pollution has become a hot issue of human concern, and people are put forward higher requirements for the accuracy of pollutant concentration simulations. Based on the the WRF-Chem model simulation results and Beijing environmental monitoring data, this study constructed the XGBoost algorithm through the process of data cleaning, feature selection and super parameter optimization, and the optimized simulation of PM 2.5 and O 3 concentrations in Beijing was then carried out based on the constructed algorithm. The results showed that the XGBoost algorithm can better capture the spatial and temporal variation patterns of pollutant concentrations, and has a greater improvement on the simulation results of the WRF-Chem model, and that the XGBoost algorithm shows better optimisation results in urban areas compared to suburban areas. In addition, the overall analysis of the features of PM 2.5 and O 3 concentrations based on the SHAP value theory showed that the time series and periodic features, aerosol ion concentration of Sodium (NAAJ) and Nitrate concentration (NO3AJ) were the important features affecting the prediction of PM 2.5 concentration by the XGBoost algorithm, and the most important factor affecting O 3 concentration is temperature. PM 2.5 and O 3 concentrations were divided into three levels, and several samples were selected for single sample analysis. The analysis showed that at low pollutant concentration, most of the features made negative contributions to the concentration prediction, while at high concentration, most of the features made positive contributions. The contribution values of different features varied greatly and were unevenly distributed. The results of prediction were basically composed of a few features with large feature contributions, and the feature contributions of the same feature to different concentration prediction results were also different. Moreover, the XGBoost algorithm was used to optimize the concentration of pollutant at each grid point in Beijing, and a set of pollutant concentration data set with spatial resolution of 6 km and time resolution of 1 h covering the whole Beijing was established, and the optimized spatial distribution of pollutant concentration was closer to the spatial distribution of observed concentration than WRF-Chem simulation. At last, compared with SVR, LR, DTR and RF algorithms, XGBoost algorithm was better than other statistical algorithms in optimising PM 2.5 and O 3 concentrations. The results of this study provided a new idea for an in-depth analysis of optimization principle of algorithm model for air pollution and a quantitative study of the influencing factors. • Based on WRF-Chem and XGBoost algorithm, the pollutant concentration is optimized. • The optimization of pollutant concentration by XGBoost algorithm are satisfactory. • The principle of algorithm optimization is analyzed based on the Shap value. • A high-quality data set with spatial resolution of 6 km and time resolution of 1 h is established.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溏心发布了新的文献求助20
刚刚
1秒前
陈陈完成签到,获得积分10
1秒前
断了的弦完成签到,获得积分10
1秒前
Lu完成签到,获得积分10
1秒前
orixero应助Nicole采纳,获得10
1秒前
顺利紫山完成签到,获得积分10
1秒前
tsuki发布了新的文献求助30
2秒前
zhonglv7应助小巧香旋采纳,获得10
2秒前
2秒前
vera完成签到,获得积分10
2秒前
yyy0202完成签到,获得积分20
3秒前
whoami完成签到,获得积分10
3秒前
凝望那片海2020完成签到,获得积分10
3秒前
Max发布了新的文献求助10
4秒前
5秒前
jlk完成签到,获得积分10
5秒前
fanlin完成签到,获得积分0
5秒前
烟花应助冷酷的雪糕采纳,获得10
5秒前
祖冰绿完成签到,获得积分10
5秒前
无花果应助whoami采纳,获得10
6秒前
Freya完成签到,获得积分10
6秒前
Chillym完成签到 ,获得积分10
7秒前
eye完成签到,获得积分10
7秒前
8秒前
David完成签到 ,获得积分10
8秒前
淡然的咖啡豆完成签到 ,获得积分10
8秒前
ppzy发布了新的文献求助10
10秒前
Bethune124完成签到 ,获得积分10
10秒前
11秒前
111完成签到,获得积分10
12秒前
Icey完成签到 ,获得积分10
12秒前
英姑应助awaibi采纳,获得10
13秒前
白了个白完成签到 ,获得积分10
14秒前
14秒前
123发布了新的文献求助10
15秒前
爱因斯坦那个和我一样的科学家完成签到 ,获得积分10
15秒前
YQ完成签到,获得积分20
16秒前
yydragen应助故川采纳,获得30
16秒前
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4179034
求助须知:如何正确求助?哪些是违规求助? 3714405
关于积分的说明 11710118
捐赠科研通 3395446
什么是DOI,文献DOI怎么找? 1862845
邀请新用户注册赠送积分活动 921488
科研通“疑难数据库(出版商)”最低求助积分说明 833299