High Thermoelectric Performance in Chalcopyrite Cu1–xAgxGaTe2–ZnTe: Nontrivial Band Structure and Dynamic Doping Effect

塞贝克系数 热电效应 兴奋剂 三元运算 化学 电子能带结构 带隙 密度泛函理论 凝聚态物理 杂质 电阻率和电导率 电子结构 态密度 黄铜矿 电子迁移率 热电材料 计算化学 热力学 物理 有机化学 量子力学 计算机科学 程序设计语言
作者
Hongyao Xie,Yukun Liu,Yinying Zhang,Shiqiang Hao,Zhi Li,Matthew Cheng,Songting Cai,G. Jeffrey Snyder,Chris Wolverton,Ctirad Uher,Vinayak P. Dravid,Mercouri G. Kanatzidis
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (20): 9113-9125 被引量:22
标识
DOI:10.1021/jacs.2c02726
摘要

The understanding of thermoelectric properties of ternary I-III-VI2 type (I = Cu, Ag; III = Ga, In; and VI = Te) chalcopyrites is less well developed. Although their thermal transport properties are relatively well studied, the relationship between the electronic band structure and charge transport properties of chalcopyrites has been rarely discussed. In this study, we reveal the unusual electronic band structure and the dynamic doping effect that could underpin the promising thermoelectric properties of Cu1-xAgxGaTe2 compounds. Density functional theory (DFT) calculations and electronic transport measurements suggest that the Cu1-xAgxGaTe2 compounds possess an unusual non-parabolic band structure, which is important for obtaining a high Seebeck coefficient. Moreover, a mid-gap impurity level was also observed in Cu1-xAgxGaTe2, which leads to a strong temperature-dependent carrier concentration and is able to regulate the carrier density at the optimized value for a wide temperature region and thus is beneficial to obtaining the high power factor and high average ZT of Cu1-xAgxGaTe2 compounds. We also demonstrate a great improvement in the thermoelectric performance of Cu1-xAgxGaTe2 by introducing Cu vacancies and ZnTe alloying. The Cu vacancies are effective in increasing the hole density and the electrical conductivity, while ZnTe alloying reduces the thermal conductivity. As a result, a maximum ZT of 1.43 at 850 K and a record-high average ZT of 0.81 for the Cu0.68Ag0.3GaTe2-0.5%ZnTe compound are achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rzzz完成签到,获得积分10
刚刚
刚刚
PJZou发布了新的文献求助10
刚刚
2秒前
无花果应助需尽欢采纳,获得30
3秒前
accept白发布了新的文献求助10
3秒前
3秒前
rzzz发布了新的文献求助10
3秒前
阿黎发布了新的文献求助10
5秒前
orixero应助核爆流畅采纳,获得10
6秒前
繁荣的秋完成签到,获得积分20
6秒前
6秒前
小小喵发布了新的文献求助10
7秒前
包容菲鹰完成签到 ,获得积分10
7秒前
小蘑菇应助HelenDong采纳,获得10
8秒前
科研混子完成签到,获得积分20
8秒前
天天快乐应助啥也不会采纳,获得10
8秒前
通天塔发布了新的文献求助10
9秒前
酷波er应助研友_n2Q9KL采纳,获得10
10秒前
共享精神应助tl采纳,获得10
10秒前
11秒前
accept白完成签到,获得积分10
11秒前
11秒前
Akim应助兜兜采纳,获得10
11秒前
传奇3应助小英采纳,获得10
12秒前
可乐发布了新的文献求助10
13秒前
柯一一应助大脸萌采纳,获得10
13秒前
13秒前
14秒前
PJZou完成签到 ,获得积分10
15秒前
15秒前
15秒前
16秒前
生动元姗完成签到,获得积分20
16秒前
冷酷白昼完成签到,获得积分10
17秒前
17秒前
思源应助折光采纳,获得10
17秒前
17秒前
万能图书馆应助通天塔采纳,获得10
17秒前
Owen应助通天塔采纳,获得10
17秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
Counseling With Immigrants, Refugees, and Their Families From Social Justice Perspectives pages 800
藍からはじまる蛍光性トリプタンスリン研究 400
Cardiology: Board and Certification Review 400
[Lambert-Eaton syndrome without calcium channel autoantibodies] 340
New Words, New Worlds: Reconceptualising Social and Cultural Geography 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2363333
求助须知:如何正确求助?哪些是违规求助? 2071574
关于积分的说明 5177052
捐赠科研通 1799846
什么是DOI,文献DOI怎么找? 898620
版权声明 557810
科研通“疑难数据库(出版商)”最低求助积分说明 479606