Radiotherapy-immunotherapy related pneumonitis prediction from pre-treatment CT using a deep graph-based integrative model.

医学 肺癌 放射治疗 肺炎 放射科 肺炎 核医学 内科学
作者
Linlin Yang,Hui Cui,Yanan Duan,Yueyuan Yao,Bing Zou,Linlin Wang
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:40 (16_suppl): 2580-2580 被引量:2
标识
DOI:10.1200/jco.2022.40.16_suppl.2580
摘要

2580 Background: Early prediction of symptomatic pneumonitis (grade ≥ 2) could potentially assist the comprehensive management for non-small cell lung cancer (NSCLC) patients who received radiotherapy combined with immunotherapy. A more accurate integrative model for symptomatic pneumonia prediction using CT images is needed. Methods: This retrospective study contains 243 NSCLC patients (62 symptomatic pneumonitis) who underwent radiotherapy combined with immunotherapy between January 2015 and June 2021. Five-fold cross-validation was performed for training and testing. There were 195 cases in the training set (50 symptomatic pneumonitis) and 48 cases in the validation set (12 symptomatic pneumonitis) in each fold. The deep graph integrative model (DG) was composed of two pre-trained 3D UNet encoders to extract deep features from tumor and lung volumes of pre-treatment CT images, respectively, and a graph attention layer (GAT) for integration and classification. The encoders were fine-tuned using manually segmented tumor and lung CT volumetric patches from the training set. Evaluation measures include area under ROC curve (auc), sensitivity (sen), and specificity (spe). Results: Our new DG achieved auc, sen, and spe of 0.823, 0.767, and 0.810, which outperformed conventional CT radiomics model (auc 0.743, sen 0.620, spe 0.752), 3D UNet based deep radiomics model (auc 0.761, sen 0.746, spe 0.737), and our model without GAT (auc 0.796, sen 0.762, spe 0.782). The improvement was statistically significant (p < 0.001). Conclusions: Our DG model improved symptomatic pneumonia prediction using CT images, which can be used as a tool to effectively improve the safety and personalized treatment of combined radiotherapy with immunotherapy for NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余味应助科研通管家采纳,获得10
12秒前
laber应助科研通管家采纳,获得30
12秒前
余味应助科研通管家采纳,获得10
12秒前
余味应助科研通管家采纳,获得10
12秒前
陶世立完成签到 ,获得积分10
14秒前
15秒前
15秒前
Raymond完成签到,获得积分10
22秒前
小糊涂仙儿完成签到 ,获得积分10
22秒前
Owen应助Jeffery426采纳,获得10
25秒前
LinglongCai完成签到 ,获得积分10
30秒前
乐天林完成签到 ,获得积分10
32秒前
阳炎完成签到,获得积分10
34秒前
akanenn999完成签到,获得积分10
38秒前
提莫silence完成签到 ,获得积分10
39秒前
Boris完成签到 ,获得积分10
40秒前
光亮若翠完成签到,获得积分10
42秒前
柚子完成签到 ,获得积分10
44秒前
李天浩完成签到 ,获得积分10
44秒前
deng203完成签到 ,获得积分10
45秒前
新威宝贝完成签到,获得积分0
47秒前
北有云烟完成签到 ,获得积分10
48秒前
ybheart完成签到,获得积分10
48秒前
49秒前
木又完成签到 ,获得积分10
50秒前
小柒柒完成签到,获得积分10
52秒前
lorentzh完成签到,获得积分10
52秒前
绿色心情完成签到 ,获得积分10
53秒前
缓慢雅青完成签到 ,获得积分10
59秒前
NorthWang完成签到,获得积分10
1分钟前
i2stay完成签到,获得积分10
1分钟前
茉莉雨完成签到 ,获得积分10
1分钟前
WittingGU完成签到,获得积分0
1分钟前
Owen应助Hyy采纳,获得10
1分钟前
1分钟前
炸鸡完成签到 ,获得积分10
1分钟前
碧蓝丹烟完成签到 ,获得积分10
1分钟前
1分钟前
小白白完成签到 ,获得积分10
1分钟前
无幻完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234493
捐赠科研通 3043122
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994