过电位
化学
催化作用
价(化学)
析氧
电化学
分解水
电流密度
电解水
光化学
离解(化学)
电解
无机化学
材料科学
电极
物理化学
光催化
电解质
物理
量子力学
生物化学
有机化学
作者
Hui Su,Mikhail A. Soldatov,Victor Roldugin,Qinghua Liu
出处
期刊:eScience
[Elsevier]
日期:2021-12-28
卷期号:2 (1): 102-109
被引量:177
标识
DOI:10.1016/j.esci.2021.12.007
摘要
The design of active acidic oxygen evolution reaction (OER) catalysts is of paramount importance to achieve efficient large-current-density industrial hydrogen fuel production via water electrolysis. Herein, we develop a Pt-based catalyst with high electrochemical activity for the OER in acidic conditions under a large current. We achieve this by modulating the electronic structure of Pt into a high-valence, electron-accessible Pt1(2.4+δ)+ (δ = 0–0.7) state during the reaction. This electron-accessible Pt1(2.4+δ)+ single-site catalyst can effectively maintain a large OER current density of 120 mA cm−2 for more than 12 h in 0.5 M H2SO4 at a low overpotential of 405 mV, and it shows a high mass activity of ∼3350 A gmetal−1 at 10 mA cm−2 current density and 232 mV overpotential. Using in situ synchrotron radiation infrared and X-ray absorption spectroscopies, we directly observe in an experiment that a key (∗O)–Pt1–C2N2 intermediate is produced by the potential-driven structural optimization of square pyramidal Pt1–C2N2 moieties; this highly favors the dissociation of H2O over Pt1(2.4+δ)+ sites and prevents over-oxidation and dissolution of the active sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI