清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Electropolymerized Molecularly Imprinted Polymer Synthesis Guided by an Integrated Data-Driven Framework for Cortisol Detection

分子印迹聚合物 生物传感器 材料科学 聚吡咯 纳米技术 灵敏度(控制系统) 计算机科学 生物系统 聚合物 电子工程 聚合 选择性 化学 生物化学 生物 工程类 复合材料 催化作用
作者
Grace Dykstra,Benjamin E. Reynolds,Riley Smith,Kai Zhou,Yixin Liu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (22): 25972-25983 被引量:52
标识
DOI:10.1021/acsami.2c02474
摘要

Molecularly imprinted polymers (MIPs), often called "synthetic antibodies", are highly attractive as artificial receptors with tailored biomolecular recognition to construct biosensors. Electropolymerization is a fast and facile method to directly synthesize MIP sensing elements in situ on the working electrode, enabling ultra-low-cost and easy-to-manufacture electrochemical biosensors. However, due to the high dimensional design space of electropolymerized MIPs (e-MIPs), the development of e-MIPs is challenging and lengthy based on trial and error without proper guidelines. Leveraging machine learning techniques in building the quantitative relationship between synthesis parameters and corresponding sensing performance, e-MIPs' development and optimization can be facilitated. We herein demonstrate a case study on the synthesis of cortisol-imprinted polypyrrole for cortisol detection, where e-MIPs are fabricated with 72 sets of synthesis parameters with replicates. Their sensing performances are measured using a 12-channel potentiostat to construct the subsequent data-driven framework. The Gaussian process (GP) is employed as the mainstay of the integrated framework, which can account for various uncertainties in the synthesis and measurements. The Sobol index-based global sensitivity is then performed upon the GP surrogate model to elucidate the impact of e-MIPs' synthesis parameters on sensing performance and interrelations among parameters. Based on the prediction of the established GP model and local sensitivity analysis, synthesis parameters are optimized and validated by experiment, which leads to remarkable sensing performance enhancement (1.5-fold increase in sensitivity). The proposed framework is novel in biosensor development, which is expandable and also generally applicable to the development of other sensing materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫熊发布了新的文献求助10
5秒前
Yanjun完成签到,获得积分10
29秒前
duanduan123发布了新的文献求助10
30秒前
大医仁心完成签到 ,获得积分10
36秒前
49秒前
wang完成签到,获得积分10
1分钟前
顾矜应助凉白开采纳,获得10
1分钟前
1分钟前
lsl完成签到 ,获得积分10
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
紫熊完成签到,获得积分10
3分钟前
科目三应助逃跑快人一步采纳,获得10
3分钟前
3分钟前
上官若男应助TiAmo采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
TiAmo发布了新的文献求助10
3分钟前
我是老大应助Frank采纳,获得10
3分钟前
华仔应助TiAmo采纳,获得10
4分钟前
4分钟前
TiAmo发布了新的文献求助10
4分钟前
4分钟前
4分钟前
半夏发布了新的文献求助10
4分钟前
Panda发布了新的文献求助10
4分钟前
4分钟前
Panda完成签到,获得积分10
4分钟前
4分钟前
Benhnhk21完成签到,获得积分10
4分钟前
Frank发布了新的文献求助10
4分钟前
风停了完成签到,获得积分10
5分钟前
5分钟前
科研通AI6应助TiAmo采纳,获得10
5分钟前
浮游应助FWCY采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078750
求助须知:如何正确求助?哪些是违规求助? 4297387
关于积分的说明 13388181
捐赠科研通 4120230
什么是DOI,文献DOI怎么找? 2256472
邀请新用户注册赠送积分活动 1260760
关于科研通互助平台的介绍 1194581