Electropolymerized Molecularly Imprinted Polymer Synthesis Guided by an Integrated Data-Driven Framework for Cortisol Detection

分子印迹聚合物 生物传感器 材料科学 聚吡咯 纳米技术 灵敏度(控制系统) 计算机科学 生物系统 聚合物 电子工程 聚合 选择性 化学 生物化学 生物 工程类 复合材料 催化作用
作者
Grace Dykstra,Benjamin E. Reynolds,Riley Smith,Kai Zhou,Yixin Liu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (22): 25972-25983 被引量:41
标识
DOI:10.1021/acsami.2c02474
摘要

Molecularly imprinted polymers (MIPs), often called "synthetic antibodies", are highly attractive as artificial receptors with tailored biomolecular recognition to construct biosensors. Electropolymerization is a fast and facile method to directly synthesize MIP sensing elements in situ on the working electrode, enabling ultra-low-cost and easy-to-manufacture electrochemical biosensors. However, due to the high dimensional design space of electropolymerized MIPs (e-MIPs), the development of e-MIPs is challenging and lengthy based on trial and error without proper guidelines. Leveraging machine learning techniques in building the quantitative relationship between synthesis parameters and corresponding sensing performance, e-MIPs' development and optimization can be facilitated. We herein demonstrate a case study on the synthesis of cortisol-imprinted polypyrrole for cortisol detection, where e-MIPs are fabricated with 72 sets of synthesis parameters with replicates. Their sensing performances are measured using a 12-channel potentiostat to construct the subsequent data-driven framework. The Gaussian process (GP) is employed as the mainstay of the integrated framework, which can account for various uncertainties in the synthesis and measurements. The Sobol index-based global sensitivity is then performed upon the GP surrogate model to elucidate the impact of e-MIPs' synthesis parameters on sensing performance and interrelations among parameters. Based on the prediction of the established GP model and local sensitivity analysis, synthesis parameters are optimized and validated by experiment, which leads to remarkable sensing performance enhancement (1.5-fold increase in sensitivity). The proposed framework is novel in biosensor development, which is expandable and also generally applicable to the development of other sensing materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
文静三颜完成签到,获得积分10
2秒前
kyt发布了新的文献求助10
4秒前
852应助迅速的八宝粥采纳,获得10
5秒前
wanci应助Helium采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
残幻应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
wanci应助科研通管家采纳,获得10
10秒前
嘿嘿哈嘿88完成签到,获得积分10
12秒前
13秒前
13秒前
CipherSage应助陈可欣采纳,获得10
14秒前
17秒前
莱贝特发布了新的文献求助10
17秒前
17秒前
打打应助CHB只争朝夕采纳,获得10
19秒前
cryjslong完成签到,获得积分10
19秒前
19秒前
赘婿应助留胡子的之云采纳,获得10
19秒前
堂风发布了新的文献求助30
19秒前
王子完成签到,获得积分10
23秒前
kyt完成签到,获得积分10
24秒前
exosome发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
26秒前
陈鹿华完成签到 ,获得积分10
28秒前
852应助Guoqiang采纳,获得10
28秒前
Helium发布了新的文献求助10
30秒前
wanci应助Ivy采纳,获得10
31秒前
ppp发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669