吸引子
李雅普诺夫指数
钟摆
混乱的
双摆
非线性系统
运动(物理)
数学
卡皮察钟摆
可预测性
分形维数
动力学(音乐)
分形
经典力学
统计物理学
数学分析
控制理论(社会学)
倒立摆
物理
计算机科学
控制(管理)
统计
量子力学
人工智能
声学
作者
Ralf Doerner,B. Hübinger,Heng Huang,W. Martienssen
标识
DOI:10.1142/s0218127494000563
摘要
Using a driven damped pendulum as a demonstration model we illustrate some fundamental concepts of nonlinear dynamics. We find deterministic chaos in the motion of the pendulum by observing its sensitive dependence on the initial state. We calculate the corresponding Lyapunov exponents from the equation of motion. The largest exponent gives the average predictability time scale. We estimate fractal dimensions of the attractor by determining the Kaplan Yorke dimension. Further we investigate the organization of unstable periodic orbits embedded in the attractor of the pendulum.
科研通智能强力驱动
Strongly Powered by AbleSci AI