超参数
计算机科学
卷积神经网络
判决
任务(项目管理)
人工智能
词(群论)
简单(哲学)
机器学习
自然语言处理
模式识别(心理学)
数学
工程类
哲学
系统工程
认识论
几何学
出处
期刊:Cornell University - arXiv
日期:2014-01-01
被引量:1127
标识
DOI:10.48550/arxiv.1408.5882
摘要
We report on a series of experiments with convolutional neural networks (CNN) trained on top of pre-trained word vectors for sentence-level classification tasks. We show that a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks. Learning task-specific vectors through fine-tuning offers further gains in performance. We additionally propose a simple modification to the architecture to allow for the use of both task-specific and static vectors. The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification.
科研通智能强力驱动
Strongly Powered by AbleSci AI