神经形态工程学
横杆开关
计算机科学
可扩展性
人工神经网络
晶体管
计算机体系结构
电压
并行计算
材料科学
计算机硬件
电气工程
工程类
人工智能
电信
数据库
作者
Elliot J. Fuller,Scott T. Keene,Armantas Melianas,Zhongrui Wang,Sapan Agarwal,Yiyang Li,Yaakov Tuchman,Conrad D. James,Matthew Marinella,J. Joshua Yang,Alberto Salleo,A. Alec Talin
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2019-04-25
卷期号:364 (6440): 570-574
被引量:707
标识
DOI:10.1126/science.aaw5581
摘要
Ionic floating-gate memories Digital implementations of artificial neural networks perform many tasks, such as image recognition and language processing, but are too energy intensive for many applications. Analog circuits that use large crossbar arrays of synaptic memory elements represent a low-power alternative, but most devices cannot update the synaptic weights uniformly or scale to large array sizes. Fuller et al. developed an integrated device, ionic floating-gate memory, that has the gate terminal of a redox transistor electrically connected to a diffusive memristor. This low-power device enabled linear and symmetric weight updates in parallel over an entire crossbar array at megahertz rates over 10 9 write-read cycles. Science , this issue p. 570
科研通智能强力驱动
Strongly Powered by AbleSci AI