Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition

极限学习机 希尔伯特-黄变换 残余物 模式(计算机接口) 算法 自相关 偏自我相关函数 集合预报 系列(地层学) 人工智能 随机森林 计算机科学 时间序列 机器学习 数据挖掘 能量(信号处理) 数学 统计 自回归积分移动平均 人工神经网络 地质学 操作系统 古生物学
作者
Mumtaz Ali,Ramendra Prasad
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:104: 281-295 被引量:204
标识
DOI:10.1016/j.rser.2019.01.014
摘要

Data-intelligent algorithms designed for forecasting significant height of coastal waves over the relatively short time period in coastal zones can generate crucial information about enhancing the renewable energy production. In this study, a machine learning model is designed and evaluated for forecasting significant wave height (Hs) within the eastern coastal zones of Australia. The extreme learning machine (ELM) model is coupled with an improved complete ensemble empirical mode decomposition method with adaptive noise (ICEEMDAN) to design the proposed ICEEMDAN-ELM model. This model incorporates the historical lagged series of Hs as the model's predictor to forecast future Hs. The ICEEMDAN algorithm demarcates the original Hs data from January-2000 to March-2018, recorded at 30-min intervals, into decomposed signals i.e., intrinsic mode functions (IMFs) and a residual component. After decomposition, the partial autocorrelation function is determined for each IMF and the residual sub-series to determine the statistically significant lagged input dataset. The ELM model is applied for forecasting of each IMF by incorporating the significant antecedent Hs sub-series as inputs. Finally, all the forecasted IMFs are summed up to obtain the final forecasted Hs. The results are benchmarked with those from an online sequential extreme learning machine (OSELM) and random forest (RF) integrated with ICEEMDAN, i.e., the ICEEMDAN-OSELM and ICEEMDAN-RF models. The proposed ICEEMDAN-ELM model is tested geographically at two coastal sites of the Queensland state, Australia. The testing performance of all the standalone (ELM, OSELM, RF) and integrated models (ICEEMDAN-ELM, ICEEMDAN-OSELM, ICEEMDAN-RF), according to robust statistical error metrics, is satisfactory; however, the hybrid ICEEMDAN-ELM model is found to be a beneficial Hs forecasting tool in accordance to high performance accuracy. The proposed ICEEMDAN-ELM model can be considered as a pertinent decision-support framework and is vital for designing of reliable ocean energy converters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零点零壹发布了新的文献求助10
刚刚
啊宁完成签到 ,获得积分10
刚刚
尼尼恁好发布了新的文献求助10
1秒前
1秒前
cgl155410完成签到,获得积分10
1秒前
TheBugsss发布了新的文献求助20
2秒前
lewis17发布了新的文献求助10
2秒前
努力完成签到 ,获得积分10
2秒前
3秒前
who发布了新的文献求助10
4秒前
kkhenry发布了新的文献求助10
4秒前
乃惜发布了新的文献求助10
4秒前
5秒前
呆崽发布了新的文献求助10
5秒前
Duke发布了新的文献求助10
7秒前
8秒前
三斤完成签到,获得积分10
9秒前
coco发布了新的文献求助10
9秒前
筱甜发布了新的文献求助10
10秒前
Owen应助LZR采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
现代雁桃发布了新的文献求助10
11秒前
烟花应助乃惜采纳,获得10
12秒前
miaomiao完成签到,获得积分10
12秒前
月之助发布了新的文献求助10
16秒前
16秒前
19秒前
咖啡豆完成签到 ,获得积分10
20秒前
20秒前
SciGPT应助linxm7采纳,获得10
20秒前
21秒前
酷波er应助hyyy采纳,获得10
21秒前
姜沄沄完成签到,获得积分10
21秒前
guoleileity完成签到,获得积分10
22秒前
魔幻灯泡完成签到,获得积分10
22秒前
coffee完成签到,获得积分10
22秒前
HEIKU应助三斤采纳,获得10
22秒前
多情盼雁完成签到 ,获得积分20
22秒前
JamesPei应助钇铯采纳,获得10
23秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886703
求助须知:如何正确求助?哪些是违规求助? 3428918
关于积分的说明 10762970
捐赠科研通 3153936
什么是DOI,文献DOI怎么找? 1741281
邀请新用户注册赠送积分活动 840610
科研通“疑难数据库(出版商)”最低求助积分说明 785452