凝聚态物理
反铁磁性
材料科学
磁化
电阻率和电导率
磁化率
铁磁性
费米能量
塞贝克系数
磁性
费米能级
热导率
物理
磁场
电子
复合材料
量子力学
作者
B. C. Sales,Jiaqiang Yan,William R. Meier,A. D. Christianson,Satoshi Okamoto,Michael A. McGuire
标识
DOI:10.1103/physrevmaterials.3.114203
摘要
Single crystals of the single kagome layer compound FeSn are investigated using x-ray and neutron scattering, magnetic susceptibility and magnetization, heat capacity, resistivity, Hall, Seebeck, thermal expansion, thermal conductivity measurements, and density functional theory (DFT). FeSn is a planar antiferromagnet below ${T}_{\mathrm{N}}=365\phantom{\rule{0.28em}{0ex}}\mathrm{K}$ and exhibits ferromagnetic magnetic order within each kagome layer. The in-plane magnetic susceptibility is sensitive to synthesis conditions. Resistivity, Hall and Seebeck results indicate multiple bands near the Fermi energy. The resistivity of FeSn is \ensuremath{\approx}3 times lower for current along the stacking direction than in the plane, suggesting that transport and the bulk electronic structure of FeSn is not quasi-two-dimensional (2D). FeSn is an excellent metal with \ensuremath{\rho}(300 K)/\ensuremath{\rho}(2 K) values \ensuremath{\approx}100 in both directions. While the ordered state is antiferromagnetic, high temperature susceptibility measurements indicate a ferromagnetic Curie-Weiss temperature of 173 K, reflecting the strong in-plane ferromagnetic interactions. DFT calculations show a 3D electronic structure with the Dirac nodal lines along the K-H directions in the magnetic Brillouin zone about 0.3 eV below the Fermi energy, with the Dirac dispersions at the $K$ points gapped by spin-orbit coupling except at the $H$ point. The magnetism, however, is highly 2D with ${J}_{\mathrm{in}\text{\ensuremath{-}}\mathrm{plane}}/{J}_{\mathrm{out}\text{\ensuremath{-}}\mathrm{of}\text{\ensuremath{-}}\mathrm{plane}}\ensuremath{\approx}10$. The predicted spin-wave spectrum is presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI