亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks

鉴别器 高光谱成像 生成对抗网络 计算机科学 人工智能 模式识别(心理学) 生成语法 图像(数学) 深度学习 噪音(视频) 机器学习 电信 探测器
作者
Hongmin Gao,Dan Yao,Mingxia Wang,Chenming Li,Haiyun Liu,Hua Zhang,Jiawei Wang
出处
期刊:Sensors [MDPI AG]
卷期号:19 (15): 3269-3269 被引量:21
标识
DOI:10.3390/s19153269
摘要

Hyperspectral remote sensing images (HSIs) have great research and application value. At present, deep learning has become an important method for studying image processing. The Generative Adversarial Network (GAN) model is a typical network of deep learning developed in recent years and the GAN model can also be used to classify HSIs. However, there are still some problems in the classification of HSIs. On the one hand, due to the existence of different objects with the same spectrum phenomenon, if only according to the original GAN model to generate samples from spectral samples, it will produce the wrong detailed characteristic information. On the other hand, the gradient disappears in the original GAN model and the scoring ability of a single discriminator limits the quality of the generated samples. In order to solve the above problems, we introduce the scoring mechanism of multi-discriminator collaboration and complete semi-supervised classification on three hyperspectral data sets. Compared with the original GAN model with a single discriminator, the adjusted criterion is more rigorous and accurate and the generated samples can show more accurate characteristics. Aiming at the pattern collapse and diversity deficiency of the original GAN generated by single discriminator, this paper proposes a multi-discriminator generative adversarial networks (MDGANs) and studies the influence of the number of discriminators on the classification results. The experimental results show that the introduction of multi-discriminator improves the judgment ability of the model, ensures the effect of generating samples, solves the problem of noise in generating spectral samples and can improve the classification effect of HSIs. At the same time, the number of discriminators has different effects on different data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
啊湫超爱学习完成签到,获得积分10
22秒前
23秒前
Crystal发布了新的文献求助10
30秒前
坚强的平卉应助高晨焜采纳,获得10
38秒前
高晨焜完成签到,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
ChenLan发布了新的文献求助10
1分钟前
lisa发布了新的文献求助10
1分钟前
kukudou2发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
时间煮雨我煮鱼完成签到,获得积分10
3分钟前
你嵙这个期刊没买完成签到 ,获得积分10
3分钟前
3分钟前
GingerF应助Jsihao采纳,获得50
3分钟前
NiNi完成签到 ,获得积分10
3分钟前
babbybai发布了新的文献求助10
3分钟前
脑洞疼应助Jsihao采纳,获得10
3分钟前
搜集达人应助Jsihao采纳,获得10
3分钟前
3分钟前
楠楠2001完成签到 ,获得积分10
4分钟前
cc完成签到,获得积分10
4分钟前
袁青寒完成签到,获得积分10
4分钟前
布吉岛应助口岸是你采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
5分钟前
研友_LkD29n完成签到 ,获得积分10
5分钟前
于戏完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407910
求助须知:如何正确求助?哪些是违规求助? 4525355
关于积分的说明 14101684
捐赠科研通 4439234
什么是DOI,文献DOI怎么找? 2436668
邀请新用户注册赠送积分活动 1428628
关于科研通互助平台的介绍 1406729