已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks

鉴别器 高光谱成像 生成对抗网络 计算机科学 人工智能 模式识别(心理学) 生成语法 图像(数学) 深度学习 噪音(视频) 机器学习 电信 探测器
作者
Hongmin Gao,Dan Yao,Mingxia Wang,Chenming Li,Haiyun Liu,Hua Zhang,Jiawei Wang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:19 (15): 3269-3269 被引量:21
标识
DOI:10.3390/s19153269
摘要

Hyperspectral remote sensing images (HSIs) have great research and application value. At present, deep learning has become an important method for studying image processing. The Generative Adversarial Network (GAN) model is a typical network of deep learning developed in recent years and the GAN model can also be used to classify HSIs. However, there are still some problems in the classification of HSIs. On the one hand, due to the existence of different objects with the same spectrum phenomenon, if only according to the original GAN model to generate samples from spectral samples, it will produce the wrong detailed characteristic information. On the other hand, the gradient disappears in the original GAN model and the scoring ability of a single discriminator limits the quality of the generated samples. In order to solve the above problems, we introduce the scoring mechanism of multi-discriminator collaboration and complete semi-supervised classification on three hyperspectral data sets. Compared with the original GAN model with a single discriminator, the adjusted criterion is more rigorous and accurate and the generated samples can show more accurate characteristics. Aiming at the pattern collapse and diversity deficiency of the original GAN generated by single discriminator, this paper proposes a multi-discriminator generative adversarial networks (MDGANs) and studies the influence of the number of discriminators on the classification results. The experimental results show that the introduction of multi-discriminator improves the judgment ability of the model, ensures the effect of generating samples, solves the problem of noise in generating spectral samples and can improve the classification effect of HSIs. At the same time, the number of discriminators has different effects on different data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美大侠完成签到,获得积分10
2秒前
天天快乐应助聪慧曲奇采纳,获得10
3秒前
haizz完成签到 ,获得积分10
3秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
pocky完成签到,获得积分10
8秒前
田一点完成签到,获得积分10
8秒前
10秒前
万能图书馆应助fly采纳,获得10
11秒前
Lychee完成签到 ,获得积分10
12秒前
舒心雨发布了新的文献求助10
13秒前
wy完成签到,获得积分10
15秒前
16秒前
18秒前
cpf完成签到,获得积分10
19秒前
聪慧曲奇发布了新的文献求助10
19秒前
Monica完成签到,获得积分10
19秒前
heavennew完成签到,获得积分10
20秒前
明朗完成签到 ,获得积分10
22秒前
123完成签到 ,获得积分10
23秒前
fly发布了新的文献求助10
23秒前
28秒前
30秒前
wu完成签到,获得积分20
30秒前
叽叽卟卟完成签到 ,获得积分10
32秒前
痴情的博超应助释棱采纳,获得30
33秒前
Jenny发布了新的文献求助10
35秒前
38秒前
飘逸的一笑完成签到,获得积分10
38秒前
天下无敌完成签到 ,获得积分10
40秒前
40秒前
41秒前
小马甲应助飘逸的一笑采纳,获得10
45秒前
45秒前
SciGPT应助wu采纳,获得30
46秒前
可耐的碧发布了新的文献求助10
48秒前
hhl完成签到,获得积分10
49秒前
打打应助Jenny采纳,获得10
50秒前
52秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800847
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329133
捐赠科研通 3062794
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702