On the use of deep learning for computational imaging

计算机科学 机器学习 领域(数学) 人工智能 深度学习 过程(计算) 口译(哲学) 影像学 数学 操作系统 程序设计语言 纯数学
作者
George Barbastathis,Aydogan Özcan,Guohai Situ
出处
期刊:Optica [Optica Publishing Group]
卷期号:6 (8): 921-921 被引量:640
标识
DOI:10.1364/optica.6.000921
摘要

Since their inception in the 1930-1960s, the research disciplines of computational imaging and machine learning have followed parallel tracks and, during the last two decades, experienced explosive growth drawing on similar progress in mathematical optimization and computing hardware.While these developments have always been to the benefit of image interpretation and machine vision, only recently has it become evident that machine learning architectures, and deep neural networks in particular, can be effective for computational image formation, aside from interpretation.The deep learning approach has proven to be especially attractive when the measurement is noisy and the measurement operator ill posed or uncertain.Examples reviewed here are: super-resolution; lensless retrieval of phase and complex amplitude from intensity; photon-limited scenes, including ghost imaging; and imaging through scatter.In this paper, we cast these works in a common framework.We relate the deep-learning-inspired solutions to the original computational imaging formulation and use the relationship to derive design insights, principles, and caveats of more general applicability.We also explore how the machine learning process is aided by the physics of imaging when ill posedness and uncertainties become particularly severe.It is hoped that the present unifying exposition will stimulate further progress in this promising field of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈媛发布了新的文献求助10
刚刚
李四完成签到 ,获得积分10
刚刚
1秒前
pu完成签到 ,获得积分10
1秒前
liu完成签到,获得积分20
1秒前
ascf发布了新的文献求助10
2秒前
科研通AI5应助超帅的浩浩采纳,获得10
2秒前
bkagyin应助YL_娟头儿采纳,获得10
2秒前
yaflame发布了新的文献求助10
3秒前
李爱国应助maomaozi采纳,获得10
3秒前
逢投必过发布了新的文献求助10
4秒前
júpiter完成签到,获得积分10
4秒前
默11发布了新的文献求助10
4秒前
CIOOICO1发布了新的文献求助10
5秒前
英姑应助郝好月采纳,获得10
5秒前
Peng完成签到,获得积分10
5秒前
研友_851KE8发布了新的文献求助10
5秒前
5秒前
宋佳完成签到,获得积分10
7秒前
SYLH应助张国浩采纳,获得10
8秒前
义气小白菜完成签到 ,获得积分10
8秒前
8秒前
万椿发布了新的文献求助20
9秒前
chun发布了新的文献求助10
9秒前
小蘑菇应助科yt采纳,获得10
10秒前
FashionBoy应助ascf采纳,获得10
10秒前
11秒前
11秒前
chen完成签到,获得积分10
12秒前
Emily完成签到,获得积分10
13秒前
13秒前
英姑应助黎黎采纳,获得10
13秒前
计算机小咖完成签到,获得积分10
14秒前
霸气的怀寒完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
华仔应助flyabc采纳,获得10
15秒前
拉总发布了新的文献求助10
15秒前
星沉静默发布了新的文献求助10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384315
关于积分的说明 10534047
捐赠科研通 3104710
什么是DOI,文献DOI怎么找? 1709789
邀请新用户注册赠送积分活动 823323
科研通“疑难数据库(出版商)”最低求助积分说明 774034