化学
解吸
电喷雾电离
电离
电喷雾
萃取电喷雾电离
分析化学(期刊)
质谱法
色谱法
质谱中的样品制备
离子
物理化学
有机化学
吸附
作者
Buyun Chen,Sadie F. Mason,Michael G. Bartlett
标识
DOI:10.1007/s13361-012-0509-5
摘要
The chemical composition of the solution has a critical impact on the electrospray desorption efficiency of oligonucleotides. Several physiochemical properties of various organic modifiers were investigated with respect to their role in the desorption process of oligonucleotides. The Henry's Law Constant, which reflects the volatility of alkylamines, was found to have a prominent effect on both the electrospray charge state distribution and desorption efficiency of oligonucleotides. Alkylamines with higher k(H,cc)(aq/gas) values such as hexylamine, piperidine, and imidazole reduced the charge state distribution by forming complexes with the oligonucleotide and dissociating from it in the gas phase, while alkylamines with extremely low k(H,cc)(aq/gas) values reduced the electrospray charge state distribution by facilitating ion emission at an earlier stage of the electrospray desorption process. Ion-pairing agents with moderate k(H,cc)(aq/gas) values do not alter the electrospray charge state distribution of oligonucleotides and their ability to enhance oligonucleotide ionization followed the order of decreasing k(H,cc)(aq/gas) values. The Henry's Law Constant also correlated to the impact of the acidic modifiers on oligonucleotide ionization efficiency. Ionization enhancement effects were observed with hexafluoroisopropanol, and this effect was attributed to its low k(H,cc)(aq/gas) and moderate acidity. The comprehensive effects of both alkylamine and hexafluoroisoproapnol on the electrospray ionization desorption of oligonucleotides were also evaluated, and acid-base equilibrium was found to play a critical role in determining these effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI