人工神经网络
计算机科学
焦平面阵列
最小均方滤波器
趋同(经济学)
固定模式噪声
探测器
算法
光学
校准
噪音(视频)
过程(计算)
红外线的
自适应光学
基点
人工智能
自适应滤波器
物理
图像(数学)
图像传感器
电信
操作系统
经济增长
经济
量子力学
作者
Rui Lai,Yanchao Yang,Di Zhou,Li Yuejin
出处
期刊:Applied optics
[The Optical Society]
日期:2008-08-14
卷期号:47 (24): 4331-4331
被引量:15
摘要
An improved scene-adaptive nonuniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPAs) is proposed. This method simultaneously estimates the infrared detectors' parameters and eliminates the nonuniformity causing fixed pattern noise (FPN) by using a neural network (NN) approach. In the learning process of neuron parameter estimation, the traditional LMS algorithm is substituted with the newly presented variable step size (VSS) normalized least-mean square (NLMS) based adaptive filtering algorithm, which yields faster convergence, smaller misadjustment, and lower computational cost. In addition, a new NN structure is designed to estimate the desired target value, which promotes the calibration precision considerably. The proposed NUC method reaches high correction performance, which is validated by the experimental results quantitatively tested with a simulative testing sequence and a real infrared image sequence.
科研通智能强力驱动
Strongly Powered by AbleSci AI