计算机科学
分割
可视化
黑森矩阵
人工智能
滤波器(信号处理)
计算机视觉
模式识别(心理学)
图像分割
噪音(视频)
图像(数学)
数学
应用数学
作者
Tim Jerman,Franjo Pernuš,Boštjan Likar,Žiga Špiclin
摘要
Vascular diseases are among the top three causes of death in the developed countries. Effective diagnosis of vascular pathologies from angiographic images is therefore very important and usually relies on segmentation and visualization of vascular structures. To enhance the vascular structures prior to their segmentation and visualization, and to suppress non-vascular structures and image noise, the filters enhancing vascular structures are used extensively. Even though several enhancement filters are widely used, the responses of these filters are typically not uniform between vessels of different radii and, compared to the response in the central part of vessels, their response is lower at vessels' edges and bifurcations, and vascular pathologies like aneurysm. In this paper, we propose a novel enhancement filter based on ratio of multiscale Hessian eigenvalues, which yields a close-to-uniform response in all vascular structures and accurately enhances the border between the vascular structures and the background. The proposed and four state-of-the-art enhancement filters were evaluated and compared on a 3D synthetic image containing tubular structures and a clinical dataset of 15 cerebral 3D digitally subtracted angiograms with manual expert segmentations. The evaluation was based on quantitative metrics of segmentation performance, computed as area under the precision-recall curve, signal-to-noise ratio of the vessel enhancement and the response uniformity within vascular structures. The proposed filter achieved the best scores in all three metrics and thus has a high potential to further improve the performance of existing or encourage the development of more advanced methods for segmentation and visualization of vascular structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI