Beyond Frangi: an improved multiscale vesselness filter

计算机科学 分割 可视化 黑森矩阵 人工智能 滤波器(信号处理) 计算机视觉 模式识别(心理学) 图像分割 噪音(视频) 图像(数学) 数学 应用数学
作者
Tim Jerman,Franjo Pernuš,Boštjan Likar,Žiga Špiclin
出处
期刊:Proceedings of SPIE 卷期号:9413: 94132A-94132A 被引量:89
标识
DOI:10.1117/12.2081147
摘要

Vascular diseases are among the top three causes of death in the developed countries. Effective diagnosis of vascular pathologies from angiographic images is therefore very important and usually relies on segmentation and visualization of vascular structures. To enhance the vascular structures prior to their segmentation and visualization, and to suppress non-vascular structures and image noise, the filters enhancing vascular structures are used extensively. Even though several enhancement filters are widely used, the responses of these filters are typically not uniform between vessels of different radii and, compared to the response in the central part of vessels, their response is lower at vessels' edges and bifurcations, and vascular pathologies like aneurysm. In this paper, we propose a novel enhancement filter based on ratio of multiscale Hessian eigenvalues, which yields a close-to-uniform response in all vascular structures and accurately enhances the border between the vascular structures and the background. The proposed and four state-of-the-art enhancement filters were evaluated and compared on a 3D synthetic image containing tubular structures and a clinical dataset of 15 cerebral 3D digitally subtracted angiograms with manual expert segmentations. The evaluation was based on quantitative metrics of segmentation performance, computed as area under the precision-recall curve, signal-to-noise ratio of the vessel enhancement and the response uniformity within vascular structures. The proposed filter achieved the best scores in all three metrics and thus has a high potential to further improve the performance of existing or encourage the development of more advanced methods for segmentation and visualization of vascular structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wangpl1607完成签到,获得积分10
2秒前
彭于晏应助小豆包采纳,获得10
3秒前
3秒前
OsActin发布了新的文献求助10
3秒前
烟花应助焰火在采纳,获得10
4秒前
VDC应助kxkx采纳,获得30
4秒前
Dean应助kxkx采纳,获得30
4秒前
4秒前
6秒前
7秒前
未来完成签到,获得积分20
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
xsy2000发布了新的文献求助10
9秒前
zrx发布了新的文献求助10
9秒前
11秒前
11秒前
11秒前
bbking发布了新的文献求助10
11秒前
孙冬晨完成签到,获得积分10
12秒前
所所应助甜甜的大香瓜采纳,获得10
12秒前
情怀应助JINtian采纳,获得10
12秒前
未来发布了新的文献求助10
12秒前
无花果应助小白兔采纳,获得10
12秒前
13秒前
烟花应助YIQISUDA采纳,获得10
13秒前
甜橘发布了新的文献求助10
14秒前
活泼巧曼发布了新的文献求助10
14秒前
科研狗完成签到,获得积分10
14秒前
Lucas应助羰醛采纳,获得10
14秒前
英勇巨人发布了新的文献求助10
16秒前
16秒前
16秒前
wtiawtiaw完成签到,获得积分10
16秒前
科研通AI6应助咸鱼采纳,获得10
18秒前
共享精神应助甜橘采纳,获得10
19秒前
可靠的安寒完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599277
求助须知:如何正确求助?哪些是违规求助? 4684870
关于积分的说明 14836779
捐赠科研通 4667525
什么是DOI,文献DOI怎么找? 2537885
邀请新用户注册赠送积分活动 1505359
关于科研通互助平台的介绍 1470776