A Unique Metastasis Gene Signature Enables Prediction of Tumor Relapse in Early-Stage Hepatocellular Carcinoma Patients

医学 肝细胞癌 基因签名 肿瘤科 内科学 转移 队列 阶段(地层学) 癌症 基因 基因表达 生物 生物化学 古生物学
作者
Stephanie Roessler,Hu-Liang Jia,Anuradha Budhu,Marshonna Forgues,Qing-Hai Ye,Ju‐Seog Lee,Snorri S. Thorgeirsson,Zhongtang Sun,Zhao-You Tang,Lun‐Xiu Qin,Xin Wei Wang
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:70 (24): 10202-10212 被引量:939
标识
DOI:10.1158/0008-5472.can-10-2607
摘要

Abstract Metastasis-related recurrence often occurs in hepatocellular carcinoma (HCC) patients who receive curative therapies. At present, it is challenging to identify patients with high risk of recurrence, which would warrant additional therapies. In this study, we sought to analyze a recently developed metastasis-related gene signature for its utility in predicting HCC survival, using 2 independent cohorts consisting of a total of 386 patients who received radical resection. Cohort 1 contained 247 predominantly HBV-positive cases analyzed with an Affymetrix platform, whereas cohort 2 contained 139 cases with mixed etiology analyzed with the NCI Oligo Set microarray platform. We employed a survival risk prediction algorithm with training, test, and independent cross-validation strategies and found that the gene signature is predictive of overall and disease-free survival. Importantly, risk was significantly predicted independently of clinical characteristics and microarray platform. In addition, survival prediction was successful in patients with early disease, such as small (<5 cm in diameter) and solitary tumors, and the signature predicted particularly well for early recurrence risk (<2 years), especially when combined with serum alpha fetoprotein or tumor staging. In conclusion, we have shown in 2 independent cohorts with mixed etiologies and ethnicity that the metastasis gene signature is a useful tool to predict HCC outcome, suggesting the general utility of this classifier. We recommend the use of this classifier as a molecular diagnostic test to assess the risk that an HCC patient will develop tumor relapse within 2 years after surgical resection, particularly for those with early-stage tumors and solitary presentation. Cancer Res; 70(24); 10202–12. ©2010 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinn完成签到,获得积分10
刚刚
zheng完成签到 ,获得积分10
刚刚
WangXinkui发布了新的文献求助10
1秒前
Pprain完成签到,获得积分10
1秒前
Gaolongzhen完成签到,获得积分10
2秒前
3秒前
希望天下0贩的0应助Brooklyn采纳,获得10
5秒前
可爱的函函应助cc采纳,获得10
6秒前
科研通AI6应助汤纪宇采纳,获得10
7秒前
Nan语完成签到,获得积分10
7秒前
浮游应助bibgyueli采纳,获得10
8秒前
领导范儿应助Gaolongzhen采纳,获得10
9秒前
白羊发布了新的文献求助10
10秒前
meethaha完成签到,获得积分10
11秒前
kiki完成签到 ,获得积分10
13秒前
研友_VZG7GZ应助wangyixuan采纳,获得10
16秒前
完美世界应助yuriy采纳,获得20
17秒前
18秒前
CipherSage应助载尘采纳,获得10
19秒前
祝愿完成签到,获得积分10
19秒前
20秒前
善学以致用应助nana采纳,获得10
20秒前
张婷婷完成签到,获得积分10
21秒前
李爱国应助旅程采纳,获得30
22秒前
24画发布了新的文献求助10
22秒前
22秒前
Jack123发布了新的文献求助10
23秒前
希望天下0贩的0应助mudi采纳,获得10
23秒前
yiersan完成签到,获得积分10
24秒前
墨月白发布了新的文献求助50
24秒前
怡然芷蝶发布了新的文献求助30
25秒前
neo发布了新的文献求助10
25秒前
称心雁玉关注了科研通微信公众号
25秒前
26秒前
阿良发布了新的文献求助10
26秒前
Xieyusen发布了新的文献求助10
27秒前
科研通AI6应助鲤鱼越越采纳,获得10
27秒前
酷波er应助迷路画笔采纳,获得10
29秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923526
求助须知:如何正确求助?哪些是违规求助? 4193787
关于积分的说明 13026421
捐赠科研通 3965815
什么是DOI,文献DOI怎么找? 2173499
邀请新用户注册赠送积分活动 1191089
关于科研通互助平台的介绍 1100686