USING INSTANCE CLONING TO IMPROVE NAIVE BAYES FOR RANKING

朴素贝叶斯分类器 机器学习 人工智能 排名(信息检索) 计算机科学 贝叶斯定理 Bayes错误率 数据挖掘 贝叶斯概率 支持向量机 贝叶斯分类器
作者
Liangxiao Jiang,Dianhong Wang,Harry Zhang,Zhihua Cai,Bo Huang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:22 (06): 1121-1140 被引量:16
标识
DOI:10.1142/s0218001408006703
摘要

Improving naive Bayes (simply NB) 15,28 for classification has received significant attention. Related work can be broadly divided into two approaches: eager learning and lazy learning. 1 Different from eager learning, the key idea for extending naive Bayes using lazy learning is to learn an improved naive Bayes for each test instance. In recent years, several lazy extensions of naive Bayes have been proposed. For example, LBR, 30 SNNB, 27 and LWNB. 8 All these algorithms aim to improve naive Bayes' classification performance. Indeed, they achieve significant improvement in terms of classification, measured by accuracy. In many real-world data mining applications, however, an accurate ranking is more desirable than an accurate classification. Thus a natural question is whether they also achieve significant improvement in terms of ranking, measured by AUC (the area under the ROC curve). 2,11,17 Responding to this question, we conduct experiments on the 36 UCI data sets 18 selected by Weka 12 to investigate their ranking performance and find that they do not significantly improve the ranking performance of naive Bayes. Aiming at scaling up naive Bayes' ranking performance, we present a novel lazy method ICNB (instance cloned naive Bayes) and develop three ICNB algorithms using different instance cloning strategies. We empirically compare them with naive Bayes. The experimental results show that our algorithms achieve significant improvement in terms of AUC. Our research provides a simple but effective method for the applications where an accurate ranking is desirable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗子苗子完成签到,获得积分20
刚刚
吴鹏飞发布了新的文献求助10
1秒前
饼干发布了新的文献求助10
1秒前
fangruofuyun完成签到,获得积分10
1秒前
小羽完成签到,获得积分10
2秒前
Airc发布了新的文献求助10
3秒前
cc完成签到,获得积分10
3秒前
杜若完成签到,获得积分10
3秒前
NexusExplorer应助Ni采纳,获得10
5秒前
淡如菊发布了新的文献求助10
5秒前
活力山蝶应助机智剑封采纳,获得10
5秒前
Dirsch完成签到,获得积分10
6秒前
卞旭东完成签到,获得积分10
6秒前
仁爱富发布了新的文献求助30
7秒前
在水一方应助浩二采纳,获得10
7秒前
8秒前
10秒前
10秒前
长生子108yspa完成签到,获得积分10
11秒前
Airc完成签到,获得积分10
11秒前
明理的戾完成签到,获得积分10
12秒前
小徐完成签到,获得积分10
13秒前
13秒前
Muyush完成签到,获得积分10
14秒前
14秒前
小猫围子完成签到,获得积分10
15秒前
111发布了新的文献求助10
15秒前
5165asd发布了新的文献求助10
15秒前
15秒前
小草完成签到,获得积分10
15秒前
落寞溪灵完成签到 ,获得积分10
16秒前
情怀应助99668采纳,获得10
16秒前
Ni发布了新的文献求助10
17秒前
19秒前
脑洞疼应助阿尼拉姆采纳,获得10
20秒前
西游发布了新的文献求助10
22秒前
完美的从波完成签到,获得积分10
22秒前
5165asd完成签到,获得积分10
24秒前
Jaikaran应助繁荣的小白菜采纳,获得50
25秒前
26秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101131
求助须知:如何正确求助?哪些是违规求助? 3638947
关于积分的说明 11531551
捐赠科研通 3347670
什么是DOI,文献DOI怎么找? 1839760
邀请新用户注册赠送积分活动 906984
科研通“疑难数据库(出版商)”最低求助积分说明 824163