USING INSTANCE CLONING TO IMPROVE NAIVE BAYES FOR RANKING

朴素贝叶斯分类器 机器学习 人工智能 排名(信息检索) 计算机科学 贝叶斯定理 Bayes错误率 数据挖掘 贝叶斯概率 支持向量机 贝叶斯分类器
作者
Liangxiao Jiang,Dianhong Wang,Harry Zhang,Zhihua Cai,Bo Huang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:22 (06): 1121-1140 被引量:16
标识
DOI:10.1142/s0218001408006703
摘要

Improving naive Bayes (simply NB) 15,28 for classification has received significant attention. Related work can be broadly divided into two approaches: eager learning and lazy learning. 1 Different from eager learning, the key idea for extending naive Bayes using lazy learning is to learn an improved naive Bayes for each test instance. In recent years, several lazy extensions of naive Bayes have been proposed. For example, LBR, 30 SNNB, 27 and LWNB. 8 All these algorithms aim to improve naive Bayes' classification performance. Indeed, they achieve significant improvement in terms of classification, measured by accuracy. In many real-world data mining applications, however, an accurate ranking is more desirable than an accurate classification. Thus a natural question is whether they also achieve significant improvement in terms of ranking, measured by AUC (the area under the ROC curve). 2,11,17 Responding to this question, we conduct experiments on the 36 UCI data sets 18 selected by Weka 12 to investigate their ranking performance and find that they do not significantly improve the ranking performance of naive Bayes. Aiming at scaling up naive Bayes' ranking performance, we present a novel lazy method ICNB (instance cloned naive Bayes) and develop three ICNB algorithms using different instance cloning strategies. We empirically compare them with naive Bayes. The experimental results show that our algorithms achieve significant improvement in terms of AUC. Our research provides a simple but effective method for the applications where an accurate ranking is desirable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助PLAGH221采纳,获得10
刚刚
曦曦发布了新的文献求助10
刚刚
Li发布了新的文献求助10
刚刚
老实的机器猫完成签到,获得积分10
1秒前
浮游应助123采纳,获得10
1秒前
研友_VZG7GZ应助sommer12345采纳,获得10
1秒前
猪蹄完成签到 ,获得积分10
2秒前
隐形曼青应助blablawindy采纳,获得10
2秒前
2秒前
LTDJYYD完成签到,获得积分10
3秒前
笑一下蒜了完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
zm完成签到,获得积分20
3秒前
4秒前
笋枭喘应助五十圆香芹采纳,获得10
4秒前
一安完成签到,获得积分20
4秒前
勇敢小羊发布了新的文献求助10
5秒前
ll完成签到,获得积分10
5秒前
zm发布了新的文献求助10
6秒前
CHEN完成签到 ,获得积分10
6秒前
852应助mm采纳,获得10
6秒前
大力日记本完成签到,获得积分10
6秒前
7秒前
风中鸿煊关注了科研通微信公众号
7秒前
7秒前
悦耳的荔枝完成签到,获得积分10
7秒前
汉堡包应助li采纳,获得10
7秒前
8秒前
8秒前
黄淳发布了新的文献求助10
8秒前
8秒前
周斯越发布了新的文献求助10
9秒前
momo完成签到,获得积分20
9秒前
10秒前
英俊的铭应助crazy采纳,获得10
10秒前
精明凡双给纳斯达克的求助进行了留言
10秒前
Owen应助科研民工采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747795
求助须知:如何正确求助?哪些是违规求助? 4094747
关于积分的说明 12669223
捐赠科研通 3806961
什么是DOI,文献DOI怎么找? 2101645
邀请新用户注册赠送积分活动 1126966
关于科研通互助平台的介绍 1003557