稳健性(进化)
计算机科学
实验数据
概率逻辑
汽车工业
计算模型
鉴定(生物学)
振动
背景(考古学)
不确定度量化
统计模型
计算复杂性理论
工程类
算法
人工智能
机器学习
声学
数学
航空航天工程
古生物学
生物化学
化学
统计
植物
物理
生物
基因
作者
Jean-François Durand,Christian Soize,Laurent Gagliardini
摘要
The design of cars is mainly based on the use of computational models to analyze structural vibrations and internal acoustic levels. Considering the very high complexity of such structural-acoustic systems, and in order to improve the robustness of such computational structural-acoustic models, both model uncertainties and data uncertainties must be taken into account. In this context, a probabilistic approach of uncertainties is implemented in an adapted computational structural-acoustic model. The two main problems are the experimental identification of the parameters controlling the uncertainty levels and the experimental validation. Relevant experiments have especially been developed for this research in order to constitute an experimental database devoted to structural vibrations and internal acoustic pressures. This database is used to perform the experimental identification of the probability model parameters and to validate the stochastic computational model.
科研通智能强力驱动
Strongly Powered by AbleSci AI