半经典物理学
随机矩阵
混乱的
统计物理学
混沌散射
散射
物理
相关函数(量子场论)
动态台球
基质(化学分析)
弹道
指数函数
分布函数
功能(生物学)
混沌系统
概率密度函数
量子力学
数学
数学分析
特征向量
量子
统计
计算机科学
电介质
人工智能
非线性系统
复合材料
生物
材料科学
进化生物学
作者
Daniel Waltner,Jack Kuipers,Klaus Richter
标识
DOI:10.1103/physrevb.83.195315
摘要
Transport properties of open chaotic ballistic systems and their statistics can be expressed in terms of the scattering matrix connecting incoming and outgoing wave functions. Here we calculate the dependence of correlation functions of arbitrarily many pairs of scattering matrices at different energies on the Ehrenfest time using trajectory-based semiclassical methods. This enables us to verify the prediction from effective random-matrix theory that one part of the correlation function obtains an exponential damping depending on the Ehrenfest time, while also allowing us to obtain the additional contribution that arises from bands of always correlated trajectories. The resulting Ehrenfest-time dependence, responsible, e.g., for secondary gaps in the density of states of Andreev billiards, can also be seen to have strong effects on other transport quantities, such as the distribution of delay times.
科研通智能强力驱动
Strongly Powered by AbleSci AI