材料科学
泄漏(经济)
光电子学
二极管
CMOS芯片
硅
MOSFET
半导体器件
纳米电子学
兴奋剂
逻辑门
纳米尺度
功率半导体器件
电子工程
晶体管
电气工程
纳米技术
工程类
电压
图层(电子)
经济
宏观经济学
作者
Rajan K. Pandey,K. V. R. M. Murali,S. Furkay,P. Oldiges,E. Nowak
标识
DOI:10.1109/ted.2010.2054455
摘要
The efficient and successful realization of low-power semiconductor devices demands, among other things, the ability to quantitatively model and minimize myriad leakage phenomena. We report herein a general physical model to quantitatively compute crystallographic-orientation-dependent gate-induced drain leakage (GIDL), and its numerical implementation in a continuum-based device simulator. This simulation model has been successfully compared with relevant experimental data derived from heavily doped vertical diodes and 45-nm silicon-based CMOS devices. Also, the process optimization of next-generation 32-nm low-power devices has been discussed in the context of GIDL.
科研通智能强力驱动
Strongly Powered by AbleSci AI