激子
极化子
单重态
载流子
磷光
马库斯理论
有机半导体
材料科学
扩散
凝聚态物理
电荷(物理)
物理
化学物理
原子物理学
量子力学
电子
激发态
荧光
反应速率常数
动力学
作者
Sebastian T. Hoffmann,Esther Scheler,Jan‐Moritz Koenen,Michael Förster,Ullrich Scherf,Peter Strohriegl,H. Bäßler,Anna Köhler
标识
DOI:10.1103/physrevb.81.165208
摘要
It is a general notion that, in organic semiconductors, the transport of electronic excitations, such as neutral excitons of singlet or triplet type and charge carriers, is controlled by both, polaron and disorder effects. For compounds with low energetic disorder triplet exciton diffusion can be described in the framework of Marcus-theory [see Sudha Devi et al.,Phys. Rev. B 78, 045210 (2008)], and a theoretical model for diffusion in more disordered compounds has been developed [see Fishchuk et al., Phys. Rev. B 78, 045211 (2008)]. Here we experimentally demonstrate that such a modified Marcus-type model is suitable to describe triplet exciton transport in commonly used poly($p$-phenylene)-type polymers and oligomers. In particular, we provide a quantitative spectroscopic assessment of the polaronic and the disorder contribution to triplet exciton transport as a function of conjugation length. Franck-Condon analyses of the phosphorescence spectra and temperature-dependent triplet diffusion combined with analytic transport theory demonstrate that, in contrast to charge carriers, Marcus-type jump rates with dominantly polaronic activation energies control the motion of triplet excitons above a transition temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI