清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Understanding Robust Corrections in Structural Equation Modeling

估计员 离群值 稳健统计 稳健回归 峰度 数学 结构方程建模 范畴变量 应用数学 线性回归 统计 计量经济学 计算机科学
作者
Victoria Savalei
出处
期刊:Structural Equation Modeling [Informa]
卷期号:21 (1): 149-160 被引量:156
标识
DOI:10.1080/10705511.2013.824793
摘要

Abstract Robust corrections to standard errors and test statistics have wide applications in structural equation modeling (SEM). The original SEM development, due to CitationSatorra and Bentler (1988, Citation1994), was to account for the effect of nonnormality. CitationMuthén (1993) proposed corrections to accompany certain categorical data estimators, such as cat-LS or cat-DWLS. Other applications of robust corrections exist. Despite the diversity of applications, all robust corrections are constructed using the same underlying rationale: They correct for inefficiency of the chosen estimator. The goal of this article is to make the formulas behind all types of robust corrections more intuitive. This is accomplished by building an analogy with similar equations in linear regression and then by reformulating the SEM model as a nonlinear regression model. Keywords: nonnormal datarobust standard errorsSatorra-Bentler scaled chi-square Notes 1The term robust has another meaning in mainstream statistical literature, where it refers to estimators that are robust to the presence of outliers. This is not the usage here. 2A related but slightly different property is consistency, which means the parameter estimates approach their true values as the sample size increases. This property is also necessary for SEM asymptotic theory to hold. 3In the rare instances when the variables are platykyrtic (have negative kurtosis), the ML estimator can become more efficient relative to its variability with normal data, and the naïve standard errors are too large. But even in this latter case, the ML estimator is no longer the most efficient estimator with nonnormal data, but the asymptotically distribution-free (ADF) estimator of CitationBrowne (1984) is. 4The rule used here is , where A is a constant matrix. 5The usual estimate of mean squared error is . 6 Another example of a nondiagonal residual matrix is when the data are clustered. The hierarchical linear modeling (HLM) literature (CitationRaudenbush & Bryk, 2002) provides many examples of such data. It is typically handled by specialized software. 7 For instance, in WLS regression the most common approach to estimating for each subject is to set it equal to the squared difference between each observation and its predicted value from the regular LS regression (CitationNeter et al., 1996; CitationRuud, 2000). 8 Ordinary LS regression is a special case of GLS regression with V = σ2 I. Substituting into EquationEquation 4, we obtain that the LS fit function should be . This is almost EquationEquation 2, except for a constant, which does not matter for estimation. The LS fit function is typically written without such a constant. 9 This particular model can actually be reparameterized into a structural equation model that is linear in the parameters by estimating the squared loading instead, but such reparameterizations are not possible with general SEM. 10 The term correctly specified is also sometimes used in SEM to refer to the assumption that the model being fit to data is true; this is not its meaning here. In fact, throughout the article, we assume the model fit to data is correct. 11The answer is, use EquationEquation 14 setting and , the ADF estimate of the asymptotic covariance matrix. 12Two points of clarification are necessary. First, it is theoretically possible to define polychoric correlations using any multivariate distribution for the underlying data, but it is not possible to compute them under an arbitrary underlying distribution. In practice, they are always computed assuming underlying normality. Second, the assumption of underlying normality can be equivalently stated as the assumption of a probit link function connecting categorical items and latent factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Beyond095完成签到 ,获得积分10
4秒前
崔京成完成签到 ,获得积分10
8秒前
动人的招牌完成签到 ,获得积分10
10秒前
热情蜗牛完成签到 ,获得积分10
11秒前
dingtao完成签到,获得积分10
16秒前
18秒前
羽化成仙完成签到 ,获得积分10
19秒前
HHM发布了新的文献求助30
24秒前
kkk完成签到 ,获得积分10
48秒前
传奇3应助霜降采纳,获得10
52秒前
青青2020完成签到,获得积分10
53秒前
59秒前
HHM发布了新的文献求助30
1分钟前
huanghe完成签到,获得积分10
1分钟前
默默完成签到 ,获得积分10
1分钟前
1分钟前
HHM发布了新的文献求助30
1分钟前
mark完成签到,获得积分10
1分钟前
顾矜应助tianugui采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
柠檬普洱茶完成签到,获得积分10
1分钟前
HHM发布了新的文献求助30
1分钟前
Ava应助huhu采纳,获得10
1分钟前
tianugui发布了新的文献求助10
1分钟前
住在魔仙堡的鱼完成签到 ,获得积分10
1分钟前
Connie完成签到,获得积分10
1分钟前
tianugui完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
淳于惜雪完成签到 ,获得积分10
2分钟前
P_Chem完成签到,获得积分10
2分钟前
渠安完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
lilylwy完成签到 ,获得积分0
2分钟前
2分钟前
上官若男应助科研小菜鸟采纳,获得10
2分钟前
HHM发布了新的文献求助30
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599901
求助须知:如何正确求助?哪些是违规求助? 4685655
关于积分的说明 14838739
捐赠科研通 4673146
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470985