苯酚
催化作用
水溶液
化学
尖晶石
降级(电信)
纳米颗粒
动力学
核化学
激进的
无机化学
化学工程
有机化学
材料科学
工程类
物理
电信
量子力学
冶金
计算机科学
作者
Edy Saputra,Syaifullah Muhammad,Hongqi Sun,Ha‐Ming Ang,Moses O. Tadé,Shaobin Wang
标识
DOI:10.1016/j.jcis.2013.06.061
摘要
Spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles were prepared, characterized, and tested in degradation of aqueous phenol in the presence of peroxymonosulfate. It was found that Mn3O4 and Co3O4 nanoparticles are highly effective in heterogeneous activation of peroxymonosulfate to produce sulfate radicals for phenol degradation. The activity shows an order of Mn3O4>Co3O4>Fe3O4. Mn3O4 could fast and completely remove phenol in about 20 min, at the conditions of 25 ppm phenol, 0.4 g/L catalyst, 2 g/L oxone®, and 25 °C. A pseudo first order model would fit to phenol degradation kinetics and activation energies on Mn3O4 and Co3O4 were obtained as 38.5 and 66.2 kJ/mol, respectively. In addition, Mn3O4 exhibited excellent catalytic stability in several runs, demonstrating that Mn3O4 is a promising catalyst alternative to toxic Co3O4 for water treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI