光催化
载流子
材料科学
粒径
半导体
催化作用
表面电荷
化学物理
电荷(物理)
电子转移
激子
粒子(生态学)
化学工程
纳米技术
光化学
化学
光电子学
物理
物理化学
凝聚态物理
有机化学
工程类
地质学
海洋学
量子力学
作者
Songling Wang,Shuhai Lin,Dieqing Zhang,Guisheng Li,Michael K.H. Leung
标识
DOI:10.1016/j.apcatb.2017.05.043
摘要
Separation and migration of the charge carriers to the surface of semiconductor catalysts are of fundamental importance for efficient photocatalytic reactions. The interior recombination of charge carriers is detrimental to photocatalytic efficiency of catalysts. Reduction in particle size of catalysts in principle promotes charge transport to surface by shortening the migration path. The quantum size is promising for dissociating excitons into free electrons and holes in three spatial dimensions. Herein, we report the quantum-size titania (Q-TiO2) particles (2–3 nm) synthesized via a microwave-assisted rout. Combining quantum size and molecular-semiconductor interfacial effect enables more reactive sites exposure and greatly promotes charge transport from interior to surface of Q-TiO2. Hence, the Q-TiO2 catalyst gave rise to significantly improved photocatalytic performances with visible light (λ ≥ 420 nm): bacteria (E. coli) disinfection and organic pollutant (RhB) degradation. Taken together, this finding highlights the key importance of specific surface states to take into account high charge-carrier transfer and separation for photocatalytic environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI