金丝桃苷
内科学
内分泌学
脂肪肝
脂肪生成
脂质代谢
甘油三酯
胆固醇7α羟化酶
法尼甾体X受体
胆固醇
化学
胆汁酸
生物
药理学
生物化学
医学
核受体
基因
芦丁
抗氧化剂
转录因子
疾病
作者
Songsong Wang,Feiya Sheng,Liang Zou,Jianbo Xiao,Peng Li
标识
DOI:10.1016/j.jare.2021.06.001
摘要
Non-alcoholic fatty liver disease (NAFLD) results from increased hepatic total cholesterol (TC) and total triglyceride (TG) accumulation. In our previous study, we found that rats treated with hyperoside became resistant to hepatic lipid accumulation. The present study aims to investigate the possible mechanisms responsible for the inhibitory effects of hyperoside on the lipid accumulation in the liver tissues of the NAFLD rats. Label-free proteomics and metabolomics targeting at bile acid (BA) metabolism were applied to disclose the mechanisms for hyperoside reducing hepatic lipid accumulation among the NAFLD rats. In response to hyperoside treatment, several proteins related to the fatty acid degradation pathway, cholesterol metabolism pathway, and bile secretion pathway were altered, including ECI1, Acnat2, ApoE, and BSEP, etc. The expression of nuclear receptors (NRs), including farnesoid X receptor (FXR) and liver X receptor α (LXRα), were increased in hyperoside-treated rats’ liver tissue, accompanied by decreased protein expression of catalyzing enzymes in the hepatic de novo lipogenesis and increased protein level of enzymes in the classical and alternative BA synthetic pathway. Liver conjugated BAs were less toxic and more hydrophilic than unconjugated BAs. The BA-targeted metabolomics suggest that hyperoside could decrease the levels of liver unconjugated BAs and increase the levels of liver conjugated BAs. Taken together, the results suggest that hyperoside could improve the condition of NAFLD by regulating the cholesterol metabolism as well as BAs metabolism and excretion. These findings contribute to understanding the mechanisms by which hyperoside lowers the cholesterol and triglyceride in NAFLD rats.
科研通智能强力驱动
Strongly Powered by AbleSci AI