亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual self-attention with co-attention networks for visual question answering

计算机科学 答疑 人工智能 判决 对偶(语法数字) 卷积神经网络 任务(项目管理) 词(群论) 注意力网络 模式识别(心理学) 特征(语言学) 自然语言处理 机器学习 经济 管理 艺术 文学类 语言学 哲学
作者
Yun Liu,Xiaoming Zhang,Qianyun Zhang,Chaozhuo Li,Feiran Huang,Xianghong Tang,Zhoujun Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:117: 107956-107956 被引量:52
标识
DOI:10.1016/j.patcog.2021.107956
摘要

Visual Question Answering (VQA) as an important task in understanding vision and language has been proposed and aroused wide interests. In previous VQA methods, Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) are generally used to extract visual and textual features respectively, and then the correlation between these two features is explored to infer the answer. However, CNN mainly focuses on extracting local spatial information and RNN pays more attention on exploiting sequential architecture and long-range dependencies. It is difficult for them to integrate the local features with their global dependencies to learn more effective representations of the image and question. To address this problem, we propose a novel model, i.e., Dual Self-Attention with Co-Attention networks (DSACA), for VQA. It aims to model the internal dependencies of both the spatial and sequential structure respectively by using the newly proposed self-attention mechanism. Specifically, DSACA mainly contains three submodules. The visual self-attention module selectively aggregates the visual features at each region by a weighted sum of the features at all positions. The textual self-attention module automatically emphasizes the interdependent word features by integrating associated features among the sentence words. Besides, the visual-textual co-attention module explores the close correlation between visual and textual features learned from self-attention modules. The three modules are integrated into an end-to-end framework to infer the answer. Extensive experiments performed on three generally used VQA datasets confirm the favorable performance of DSACA compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
艾七七发布了新的文献求助10
11秒前
12秒前
22秒前
JACK发布了新的文献求助10
27秒前
小鸟芋圆露露完成签到 ,获得积分10
33秒前
Lucas应助机灵白桃采纳,获得10
37秒前
CodeCraft应助科研通管家采纳,获得10
49秒前
nenoaowu应助科研通管家采纳,获得10
49秒前
51秒前
樊樊发布了新的文献求助10
56秒前
LY_Qin完成签到,获得积分10
1分钟前
CC1219应助pipi采纳,获得10
1分钟前
1分钟前
机灵白桃发布了新的文献求助10
1分钟前
健康的大船完成签到 ,获得积分10
1分钟前
1分钟前
Saven发布了新的文献求助10
1分钟前
Saven完成签到,获得积分10
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
日出完成签到 ,获得积分10
2分钟前
樊樊完成签到 ,获得积分20
2分钟前
pipi完成签到 ,获得积分20
2分钟前
2分钟前
JavedAli完成签到,获得积分10
2分钟前
2分钟前
大模型应助启震采纳,获得10
2分钟前
qq发布了新的文献求助10
2分钟前
2分钟前
启震发布了新的文献求助10
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
启震完成签到,获得积分10
2分钟前
qq完成签到,获得积分20
3分钟前
4分钟前
4分钟前
小蘑菇应助Xuxiaojun采纳,获得10
4分钟前
4分钟前
4分钟前
Xuxiaojun发布了新的文献求助10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244117
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483