Machine Learning‐Driven Biomaterials Evolution

材料科学 生物材料 跳跃 纳米技术 吞吐量 计算机科学 人工智能 生化工程 工程类 电信 金融经济学 经济 无线
作者
Ady Suwardi,Fuke Wang,Kun Xue,Ming‐Yong Han,Peili Teo,Pei Wang,Shijie Wang,Ye Liu,Enyi Ye,Li Zibiao,Xian Jun Loh
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (1) 被引量:124
标识
DOI:10.1002/adma.202102703
摘要

Abstract Biomaterials is an exciting and dynamic field, which uses a collection of diverse materials to achieve desired biological responses. While there is constant evolution and innovation in materials with time, biomaterials research has been hampered by the relatively long development period required. In recent years, driven by the need to accelerate materials development, the applications of machine learning in materials science has progressed in leaps and bounds. The combination of machine learning with high‐throughput theoretical predictions and high‐throughput experiments (HTE) has shifted the traditional Edisonian (trial and error) paradigm to a data‐driven paradigm. In this review, each type of biomaterial and their key properties and use cases are systematically discussed, followed by how machine learning can be applied in the development and design process. The discussions are classified according to various types of materials used including polymers, metals, ceramics, and nanomaterials, and implants using additive manufacturing. Last, the current gaps and potential of machine learning to further aid biomaterials discovery and application are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝完成签到 ,获得积分10
刚刚
平凡之路发布了新的文献求助10
4秒前
赘婿应助吴谷杂粮采纳,获得10
4秒前
moxi摩西发布了新的文献求助10
6秒前
小泓完成签到,获得积分10
7秒前
赘婿应助十月采纳,获得10
7秒前
10秒前
12秒前
13秒前
淡定的香菱完成签到,获得积分10
14秒前
14秒前
shu发布了新的文献求助10
15秒前
17秒前
吴谷杂粮发布了新的文献求助10
17秒前
于听枫完成签到 ,获得积分10
19秒前
马大王发布了新的文献求助10
19秒前
弓雷雷完成签到,获得积分10
20秒前
dkxy完成签到,获得积分10
21秒前
CipherSage应助科研通管家采纳,获得10
22秒前
datang完成签到,获得积分10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
iNk应助科研通管家采纳,获得10
22秒前
iNk应助科研通管家采纳,获得10
23秒前
大个应助科研通管家采纳,获得10
23秒前
iNk应助科研通管家采纳,获得10
23秒前
iNk应助科研通管家采纳,获得20
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
龙猫爱看书完成签到,获得积分10
24秒前
shu完成签到,获得积分10
24秒前
火焰向上完成签到,获得积分10
25秒前
蓝色水晶完成签到,获得积分10
25秒前
亭语完成签到 ,获得积分10
33秒前
37秒前
37秒前
人间草木完成签到,获得积分10
38秒前
小鱼完成签到,获得积分10
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801432
求助须知:如何正确求助?哪些是违规求助? 3347164
关于积分的说明 10332162
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681720
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852