Evaluation of artificial intelligence using time-lapse images of IVF embryos to predict live birth

人工智能 胚胎 男科 医学 生物 计算机科学 细胞生物学
作者
Yuki Sawada,Takeshi Sato,Masashi Nagaya,Chieko Saito,Hiroyuki Yoshihara,Chihiro Banno,Y. Matsumoto,Yukino Matsuda,K Yoshikai,Tomio Sawada,Norimichi Ukita,Mayumi Sugiura‐Ogasawara
出处
期刊:Reproductive Biomedicine Online [Elsevier BV]
卷期号:43 (5): 843-852 被引量:37
标识
DOI:10.1016/j.rbmo.2021.05.002
摘要

Research question Can artificial intelligence (AI) improve the prediction of live births based on embryo images? Design The AI system was created by using the Attention Branch Network associated with deep learning to predict the probability of live birth from 141,444 images recorded by time-lapse imaging of 470 transferred embryos, of which 91 resulted in live birth and 379 resulted in non-live birth that included implantation failure, biochemical pregnancy and clinical miscarriage. The possibility that the calculated confidence scores of each embryo and the focused areas visualized in each embryo image can help predict subsequent live birth was examined. Results The AI system for the first time successfully visualized embryo features in focused areas that had potential to distinguish between live and non-live births. No visual feature of embryos were visualized that were associated with live or non-live births, although there were many images in which high-focused areas existed around the zona pellucida. When a cut-off level for the confidence score was set at 0.341, the live birth rate was significantly greater for embryos with a score higher than the cut-off level than for those with a score lower than the cut-off level (P < 0.001). In addition, the live birth rate of embryos with good morphological quality and confidence scores higher than 0.341 was 41.1%. Conclusions The authors have created an AI system with a confidence score that is useful for non-invasive selection of embryos that could result in live birth. Further study is necessary to improve selection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
turbohero完成签到,获得积分10
刚刚
健壮问兰发布了新的文献求助10
刚刚
21完成签到,获得积分10
刚刚
韩涵发布了新的文献求助10
1秒前
1秒前
YiPeng完成签到,获得积分10
2秒前
阿叉发布了新的文献求助10
3秒前
风清扬应助小马奔奔采纳,获得10
5秒前
hlb完成签到,获得积分20
5秒前
比耶完成签到 ,获得积分10
6秒前
7秒前
shidewu完成签到,获得积分10
7秒前
kingwill应助Miracle采纳,获得20
7秒前
YamDaamCaa应助袁同学采纳,获得30
8秒前
FashionBoy应助shi采纳,获得10
9秒前
邬紫依完成签到,获得积分20
9秒前
健壮问兰完成签到,获得积分10
10秒前
充电宝应助ZengJuan采纳,获得10
11秒前
maox1aoxin应助小小采纳,获得30
11秒前
夕阳完成签到,获得积分10
13秒前
KSGGS完成签到,获得积分10
13秒前
热情菠萝完成签到 ,获得积分10
15秒前
16秒前
知识四面八方来完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
long0809完成签到,获得积分10
21秒前
22秒前
shi完成签到,获得积分10
22秒前
22秒前
陶醉怜容完成签到,获得积分10
23秒前
23秒前
24秒前
SYLH应助wodetaiyangLLL采纳,获得10
25秒前
00小费0发布了新的文献求助10
26秒前
27秒前
HQK完成签到,获得积分10
27秒前
老狗子完成签到 ,获得积分10
28秒前
30秒前
misong发布了新的文献求助10
30秒前
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977850
求助须知:如何正确求助?哪些是违规求助? 3522015
关于积分的说明 11211196
捐赠科研通 3259254
什么是DOI,文献DOI怎么找? 1799573
邀请新用户注册赠送积分活动 878417
科研通“疑难数据库(出版商)”最低求助积分说明 806899