Boron‐Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in N‐Type Bi2Te3

材料科学 热电效应 晶界 冶金 维氏硬度试验 粒度 热电材料 粉末冶金 晶界强化 功勋 复合材料 微观结构 热导率 光电子学 热力学 化学 物理 有机化学
作者
Chaohua Zhang,Xingjin Geng,Bin Chen,Junqin Li,Alexander Meledin,Lipeng Hu,Fusheng Liu,Jigui Shi,Joachim Mayer,Matthias Wuttig,Oana Cojocaru‐Mirédin,Yuan Yu
出处
期刊:Small [Wiley]
卷期号:17 (42) 被引量:25
标识
DOI:10.1002/smll.202104067
摘要

Powder metallurgy introduces small structures of high-density grain boundaries into Bi2 Te3 -based alloys, which promises to enhance their mechanical and thermoelectric performance. However, due to the strong donor-like effect induced by the increased surface, Te vacancies form in the powder-metallurgy process. Hence, the as-sintered n-type Bi2 Te3 -based alloys show a lower figure of merit (ZT) value than their p-type counterparts and the commercial zone-melted (ZM) ingots. Here, boron is added to one-step-sintered n-type Bi2 Te3 -based alloys to inhibit grain growth and to suppress the donor-like effect, simultaneously improving the mechanical and thermoelectric (TE) performance. Due to the alleviated donor-like effect and the carrier mobility maintained in our n-type Bi2 Te2.7 Se0.3 alloys upon the addition of boron, the maximum and average ZT values within 298-473 K can be enhanced to 1.03 and 0.91, respectively, which are even slightly higher than that of n-type ZM ingots. Moreover, the addition of boron greatly improves the mechanical strength such as Vickers hardness and compressive strength due to the synergetic effects of Hall-Petch grain-boundary strengthening and boron dispersion strengthening. This facile and cost-effective grain boundary engineering by adding boron facilitates the practical application of Bi2 Te3 -based alloys and can also be popularized in other thermoelectric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈成完成签到,获得积分10
2秒前
3秒前
3秒前
kun发布了新的文献求助10
4秒前
6秒前
酷波er应助等待的康乃馨采纳,获得10
6秒前
zic完成签到,获得积分10
7秒前
aaa发布了新的文献求助10
7秒前
Akim应助人不犯二枉少年采纳,获得10
7秒前
乐观的蜜粉完成签到,获得积分10
8秒前
9秒前
9秒前
houfei发布了新的文献求助10
11秒前
11秒前
在水一方应助womodou采纳,获得10
12秒前
芫芫完成签到,获得积分10
12秒前
12秒前
tttp发布了新的文献求助10
12秒前
Zxy发布了新的文献求助10
14秒前
14秒前
15秒前
郭德久完成签到 ,获得积分10
16秒前
tc发布了新的文献求助10
18秒前
科研通AI5应助星星点灯采纳,获得10
18秒前
知性的冰棍完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
21秒前
徐丑发布了新的文献求助10
21秒前
21秒前
体贴乐巧完成签到 ,获得积分10
23秒前
杨杨by关注了科研通微信公众号
23秒前
23秒前
桉桉发布了新的文献求助10
24秒前
nene完成签到,获得积分20
24秒前
菲菲公主完成签到,获得积分10
24秒前
power发布了新的文献求助10
24秒前
NexusExplorer应助acc采纳,获得10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806811
求助须知:如何正确求助?哪些是违规求助? 3351524
关于积分的说明 10354611
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684489
邀请新用户注册赠送积分活动 809716
科研通“疑难数据库(出版商)”最低求助积分说明 765635