逻辑回归
人工智能
医学
接收机工作特性
急性肾损伤
机器学习
支持向量机
随机森林
置信区间
肌酐
决策树
梯度升压
计算机科学
内科学
作者
Donghwan Yun,Semin Cho,Yong Chul Kim,Dong Ki Kim,Kook‐Hwan Oh,Kwon Wook Joo,Yon Su Kim,Seung Seok Han
摘要
Precise prediction of contrast media-induced acute kidney injury (CIAKI) is an important issue because of its relationship with poor outcomes.Herein, we examined whether a deep learning algorithm could predict the risk of intravenous CIAKI better than other machine learning and logistic regression models in patients undergoing computed tomography (CT).A total of 14,185 patients who were administered intravenous contrast media for CT at the preventive and monitoring facility in Seoul National University Hospital were reviewed. CIAKI was defined as an increase in serum creatinine of ≥0.3 mg/dL within 2 days or ≥50% within 7 days. Using both time-varying and time-invariant features, machine learning models, such as the recurrent neural network (RNN), light gradient boosting machine (LGM), extreme gradient boosting machine (XGB), random forest (RF), decision tree (DT), support vector machine (SVM), κ-nearest neighbors, and logistic regression, were developed using a training set, and their performance was compared using the area under the receiver operating characteristic curve (AUROC) in a test set.CIAKI developed in 261 cases (1.8%). The RNN model had the highest AUROC of 0.755 (0.708-0.802) for predicting CIAKI, which was superior to that obtained from other machine learning models. Although CIAKI was defined as an increase in serum creatinine of ≥0.5 mg/dL or ≥25% within 3 days, the highest performance was achieved in the RNN model with an AUROC of 0.716 (95% confidence interval [CI] 0.664-0.768). In feature ranking analysis, the albumin level was the most highly contributing factor to RNN performance, followed by time-varying kidney function.Application of a deep learning algorithm improves the predictability of intravenous CIAKI after CT, representing a basis for future clinical alarming and preventive systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI