Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study

逻辑回归 人工智能 医学 接收机工作特性 急性肾损伤 机器学习 支持向量机 随机森林 置信区间 肌酐 决策树 梯度升压 计算机科学 内科学
作者
Donghwan Yun,Semin Cho,Yong Chul Kim,Dong Ki Kim,Kook‐Hwan Oh,Kwon Wook Joo,Yon Su Kim,Seung Seok Han
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:9 (10): e27177-e27177 被引量:8
标识
DOI:10.2196/27177
摘要

Precise prediction of contrast media-induced acute kidney injury (CIAKI) is an important issue because of its relationship with poor outcomes.Herein, we examined whether a deep learning algorithm could predict the risk of intravenous CIAKI better than other machine learning and logistic regression models in patients undergoing computed tomography (CT).A total of 14,185 patients who were administered intravenous contrast media for CT at the preventive and monitoring facility in Seoul National University Hospital were reviewed. CIAKI was defined as an increase in serum creatinine of ≥0.3 mg/dL within 2 days or ≥50% within 7 days. Using both time-varying and time-invariant features, machine learning models, such as the recurrent neural network (RNN), light gradient boosting machine (LGM), extreme gradient boosting machine (XGB), random forest (RF), decision tree (DT), support vector machine (SVM), κ-nearest neighbors, and logistic regression, were developed using a training set, and their performance was compared using the area under the receiver operating characteristic curve (AUROC) in a test set.CIAKI developed in 261 cases (1.8%). The RNN model had the highest AUROC of 0.755 (0.708-0.802) for predicting CIAKI, which was superior to that obtained from other machine learning models. Although CIAKI was defined as an increase in serum creatinine of ≥0.5 mg/dL or ≥25% within 3 days, the highest performance was achieved in the RNN model with an AUROC of 0.716 (95% confidence interval [CI] 0.664-0.768). In feature ranking analysis, the albumin level was the most highly contributing factor to RNN performance, followed by time-varying kidney function.Application of a deep learning algorithm improves the predictability of intravenous CIAKI after CT, representing a basis for future clinical alarming and preventive systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健的小迷弟应助王小明采纳,获得10
3秒前
MingQue完成签到,获得积分10
6秒前
Pepsi完成签到,获得积分10
7秒前
失眠天亦完成签到,获得积分10
8秒前
gumiho1007完成签到,获得积分10
12秒前
15秒前
二猫完成签到,获得积分10
18秒前
大胆易巧完成签到 ,获得积分10
19秒前
王小明发布了新的文献求助10
22秒前
28秒前
王小明完成签到,获得积分10
29秒前
HOME发布了新的文献求助10
31秒前
清新的寄风完成签到 ,获得积分10
35秒前
38秒前
lee完成签到,获得积分10
38秒前
HOME完成签到,获得积分20
39秒前
HEAUBOOK应助终生科研徒刑采纳,获得20
40秒前
Edith发布了新的文献求助10
43秒前
45秒前
猫猫头发布了新的文献求助10
46秒前
黑大侠完成签到 ,获得积分10
46秒前
orixero应助科研通管家采纳,获得10
46秒前
华仔应助科研通管家采纳,获得10
46秒前
pluto应助科研通管家采纳,获得10
46秒前
乐乐应助科研通管家采纳,获得10
46秒前
46秒前
46秒前
48秒前
666完成签到,获得积分10
51秒前
如意葶发布了新的文献求助10
53秒前
YuanLeiZhang完成签到,获得积分10
54秒前
msd2phd完成签到,获得积分10
55秒前
光亮的冰薇完成签到 ,获得积分10
55秒前
April完成签到 ,获得积分10
57秒前
57秒前
无花果应助如意葶采纳,获得10
58秒前
aa完成签到,获得积分10
59秒前
科研通AI5应助dyfsj采纳,获得10
1分钟前
drsunofoph123发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751