Dilated Adversarial U-Net Network for automatic gross tumor volume segmentation of nasopharyngeal carcinoma

分割 计算机科学 人工智能 鼻咽癌 特征(语言学) 直方图 深度学习 图像分割 模式识别(心理学) 体积热力学 放射治疗 图像(数学) 放射科 医学 量子力学 物理 哲学 语言学
作者
Yanhua Liu,Xiaoguang Yuan,Xin Jiang,Pei Wang,Jinqiao Kou,Haofeng Wang,Mingzhe Liu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:111: 107722-107722 被引量:18
标识
DOI:10.1016/j.asoc.2021.107722
摘要

Nasopharyngeal carcinoma (NPC) is a malignant tumor in the nasopharyngeal epithelium and is mainly treated by radiotherapy. The accurate delineation of the target tumor can greatly improve the radiotherapy effectiveness. However, due to the small size of the NPC imaging volume, the scarcity of labeled samples, the low signal-to-noise ratio in small target areas and the lack of detailed features, automatic gross tumor volume (GTV) delineation inspired by advances in domain adaption for high-resolution image processing has become a great challenge. In addition, since computed tomography (CT) images have the low resolution of soft tissues, it is difficult to identify small volume tumors, and segmentation accuracy of this kind of small GTV is very low. In this paper, we propose an automatic segmentation model based on adversarial network and U-Net for NPC delineation. Specifically, we embed adversarial classification learning into a segmentation network to balance the distribution differences between the small targets in the sample and the large target categories. To reduce the loss weight of large target categories with large samples, and simultaneously increase the weight of small target categories, we design a new U-Net based on focal loss as a GTV segmentation model for adjusting the effect of different categories on the final loss. This method can effectively solve the feature bias caused by the imbalance of the target volume distribution. Furthermore, we conduct a pre-processing of images using an algorithm based on distribution histograms to ensure that the same or approximate CT value represents the same organization. In order to evaluate our proposed method, we perform experiments on the open datasets from StructSeg2019 and the datasets provided by Sichuan Provincial Cancer Hospital. The results of the comparison with some typical up-to-date methods demonstrate that our model can significantly enhance detection accuracy and sensitivity for NPC segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
laihama完成签到,获得积分10
3秒前
3秒前
huangJP完成签到,获得积分10
7秒前
土豪的铭完成签到,获得积分20
8秒前
10秒前
环秋完成签到,获得积分10
11秒前
67完成签到 ,获得积分10
11秒前
12秒前
脑洞疼应助博修采纳,获得10
15秒前
呆萌刺猬完成签到 ,获得积分10
15秒前
过时的电灯胆完成签到 ,获得积分10
19秒前
20秒前
之贻完成签到,获得积分10
22秒前
123666完成签到,获得积分10
23秒前
Ying完成签到,获得积分10
24秒前
25秒前
科研小李完成签到,获得积分10
25秒前
25秒前
29秒前
百合花开发布了新的文献求助10
31秒前
32秒前
Pursue完成签到,获得积分10
33秒前
喜乐发布了新的文献求助10
34秒前
橙子完成签到,获得积分20
35秒前
小二郎应助科研通管家采纳,获得10
37秒前
yaya应助科研通管家采纳,获得10
37秒前
无花果应助科研通管家采纳,获得10
37秒前
在水一方应助科研通管家采纳,获得10
37秒前
Akim应助科研通管家采纳,获得10
37秒前
cdercder应助科研通管家采纳,获得20
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
彩色草莓发布了新的文献求助50
38秒前
小皮皮完成签到,获得积分10
42秒前
42秒前
45秒前
46秒前
博修发布了新的文献求助10
47秒前
48秒前
48秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321756
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680172
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445