材料科学
阳极
石墨烯
化学工程
碳纤维
阴极
法拉第效率
纳米技术
电极
复合材料
化学
复合数
工程类
物理化学
作者
Lei Yan,Jing Wang,Qingjuan Ren,Linlin Fan,Binhua Liu,Lijun Zhang,Liang He,Xiaoxian Mei,Zhiqiang Shi
标识
DOI:10.1016/j.cej.2021.133257
摘要
Hard carbon (HC), the most prospective anode material for sodium-ion batteries (SIBs) and potassium ion batteries (PIBs), still suffers a low initial Coulombic efficiency (ICE) and terrible rate performance, hindering commercial applications. In this study, spray drying-direct pyrolysis is used to prepare low-surface-area hard [email protected] carbon microspheres (HCG) as a high ICE anode for SIBs and PIBs. Such a tactic utilizes in-situ coating graphene instead of traditional long-term pretreatment to inhibit starch foaming, greatly reducing the preparation time and energy consumption. Benefiting from abundant mesopores, ordered microcrystalline structure and 3D conductive network, the obtained HCG for the SIBs anode delivers a high ICE and an excellent specific capacity of 343 mAh g−1 at 0.1C. Moreover, the HCG displays remarkable K storage capacity (292 mAh g−1 at 0.1C, 102 mAh g−1 at 8C) and ultra-high ICE (76.4% at 0.1C), one of the highest values in present carbon-based anodes. When matched with cathodes, the SIBs and PIBs full cells deliver exceptional energy densities of 240 and 210 W·h kg−1, respectively. Importantly, the kinetics analysis reveals HCG possesses better rate performance in PIBs than in SIBs ascribed to the higher insertion potential and larger diffusion coefficient in the plateau region. In addition, the mechanism analysis shows that there are similar behaviors for the storage of Na and K in HCG. This work not only provides an efficient and scalable preparation carbon-based anode strategy from the perspective of low energy consumption but also expands the practical material library for SIBs/PIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI