Mimicking the Brain’s Cognition of Sarcasm From Multidisciplines for Twitter Sarcasm Detection

讽刺 认知科学 计算机科学 人工智能 心理学 语言学 哲学 讽刺
作者
Fanglong Yao,Xian Sun,Hongfeng Yu,Wenkai Zhang,Wei Liang,Kun Fu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 228-242 被引量:18
标识
DOI:10.1109/tnnls.2021.3093416
摘要

Sarcasm is a sophisticated construct to express contempt or ridicule. It is well-studied in multiple disciplines (e.g., neuroanatomy and neuropsychology) but is still in its infancy in computational science (e.g., Twitter sarcasm detection). In contrast to previous methods that are usually geared toward a single discipline, we focus on the multidisciplinary cross-innovation, i.e., improving embryonic sarcasm detection in computational science by leveraging the advanced knowledge of sarcasm cognition in neuroanatomy and neuropsychology. In this work, we are oriented toward sarcasm detection in social media and correspondingly propose a multimodal, multi-interactive, and multihierarchical neural network ( $M_{3}N_{2} $ ). We select Twitter, image, text in image, and image caption as the input of $M_{3}N_{2} $ since the brain’s perception of sarcasm requires multiple modalities. To reasonably address the multimodalities, we introduce singlewise, pairwise, triplewise, and tetradwise modality interactions incorporating gate mechanism and guide attention (GA) to simulate the interactions and collaborations of involved regions in the brain while perceiving multiple modes. Specifically, we exploit a multihop process for each modality interaction to extract modal information multiple times using GA for obtaining multiperspective information. Also, we adopt a two-hierarchical structure leveraging self-attention accompanied by attention pooling to integrate multimodal semantic information from different levels mimicking the brain’s first- and second-order comprehensions of sarcasm. Experimental results show that $M_{3}N_{2} $ achieves competitive performance in sarcasm detection and displays powerful generalization ability in multimodal sentiment analysis and emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰柠檬发布了新的文献求助10
1秒前
2秒前
JamesPei应助jason采纳,获得10
3秒前
秋秋完成签到,获得积分10
4秒前
皮皮关注了科研通微信公众号
5秒前
6秒前
提拉米草发布了新的文献求助10
6秒前
Vicky完成签到 ,获得积分10
8秒前
wanci应助迅速猕猴桃采纳,获得10
9秒前
9秒前
科研通AI5应助XHS采纳,获得30
9秒前
科研通AI5应助虚幻的蘑菇采纳,获得30
10秒前
顾矜应助哇哇哇采纳,获得10
11秒前
共享精神应助zgl0806采纳,获得10
11秒前
zwj003完成签到,获得积分10
15秒前
www发布了新的文献求助10
16秒前
18秒前
MM11111应助偷乐采纳,获得10
18秒前
cc完成签到,获得积分10
21秒前
21秒前
22秒前
不知道发布了新的文献求助10
22秒前
22秒前
善学以致用应助顺利代曼采纳,获得10
23秒前
czx发布了新的文献求助30
25秒前
25秒前
科研通AI5应助张啊啊啊啊a采纳,获得10
27秒前
lcyswlk关注了科研通微信公众号
28秒前
kk发布了新的文献求助10
28秒前
翁若翠发布了新的文献求助10
29秒前
30秒前
30秒前
31秒前
斯文败类应助tailand采纳,获得30
35秒前
pluto应助温暖霸采纳,获得20
35秒前
西门迎天发布了新的文献求助30
35秒前
squid发布了新的文献求助10
38秒前
顺利代曼发布了新的文献求助10
38秒前
赘婿应助科研通管家采纳,获得10
39秒前
Owen应助科研通管家采纳,获得10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778324
求助须知:如何正确求助?哪些是违规求助? 3323927
关于积分的说明 10216572
捐赠科研通 3039206
什么是DOI,文献DOI怎么找? 1667877
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385