Comparison and implementation of machine learning models for predicting the combustion phases of hydrogen-enriched Wankel rotary engines

支持向量机 计算机科学 燃烧 机器学习 人工智能 线性回归 数学 算法 化学 有机化学
作者
Huaiyu Wang,Changwei Ji,Teng Su,Shen Cheng,Yunshan Ge,Jinxin Yang,Shuofeng Wang
出处
期刊:Fuel [Elsevier BV]
卷期号:310: 122371-122371 被引量:30
标识
DOI:10.1016/j.fuel.2021.122371
摘要

Combustion phases, such as the development period (CA0-10) and flame propagation period (CA10-90), are the critical parameters for hydrogen-enriched Wankel rotary engines. An accurate simulation model and a suitable engine management system are required to control combustion phases. In this paper, five machine learning (ML) models, including the linear regression (LR), regression tree (TR), ensembles of trees (EnTR), support vector machine (SVM), and Gaussian process regression (GPR), are initially applied to predict combustion phases. Experiments were performed with variations of the main fuel types (gasoline and n-butanol), loads (idle and part load), ignition timing, hydrogen volume fraction, and excess air ratio. The sample data were divided into training and testing data set, and the normalization method, 5-fold cross-validation, and Bayesian optimization algorithm were used for data processing and model optimization. Among five ML models, the training speed of the LR model was the fastest; the generalization ability of the TR model was the worst. The minimum leaf size of the TR model significantly influenced regression and generalization ability. On this basis, the EnTR model improved the regression ability, but required more training time. The GPR model showed the best generalization ability among the above model, while SVM performed well in a certain data set. For CA0-10, the coefficient of determination (R2) of the best LR, TR, EnTR, SVM and GPR models was 0.9910, 0.9912, 0.9985, 0.9984 and 0.9994, respectively; for CA10-90, the R2 was 0.9348, 0.8974, 0.9873, 0.9916 and 0.9975, respectively. It is highly recommended to apply the GPR model to the combustion phases prediction and control system modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
太热啦发布了新的文献求助10
1秒前
KD发布了新的文献求助10
2秒前
nation_You完成签到 ,获得积分20
2秒前
2秒前
John应助xxx采纳,获得10
3秒前
3秒前
Orange应助xmhxpz采纳,获得10
3秒前
3秒前
AyraN完成签到,获得积分10
4秒前
小美发布了新的文献求助30
4秒前
兔子发布了新的文献求助10
4秒前
英俊的铭应助直率如凡采纳,获得10
4秒前
4秒前
459954完成签到,获得积分20
5秒前
chen7777完成签到,获得积分10
5秒前
爱听歌书芹完成签到,获得积分20
5秒前
6秒前
zhou发布了新的文献求助10
6秒前
噢噢发布了新的文献求助10
6秒前
Palm发布了新的文献求助10
6秒前
听听完成签到,获得积分10
7秒前
科研通AI6应助川川采纳,获得10
8秒前
噔噔噔噔发布了新的文献求助10
8秒前
婷婷发布了新的文献求助10
8秒前
9秒前
tian发布了新的文献求助10
9秒前
whoami发布了新的文献求助10
10秒前
10秒前
沉静盼山发布了新的文献求助10
11秒前
在水一方应助KD采纳,获得10
11秒前
13秒前
Owen应助任浩采纳,获得10
13秒前
斯文败类应助晚棠采纳,获得10
13秒前
14秒前
万能图书馆应助鹿叽叽采纳,获得10
14秒前
噢噢完成签到,获得积分10
14秒前
CipherSage应助tjr8910采纳,获得10
14秒前
CipherSage应助qq大魔王采纳,获得10
14秒前
雪山飞龙发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708