Barlow Twins: Self-Supervised Learning via Redundancy Reduction

人工智能 计算机科学 冗余(工程) 模式识别(心理学) 分类器(UML) 机器学习 嵌入 算法 数学 操作系统
作者
Jure Zbontar,Li Jing,Ishan Misra,Yann LeCun,Stéphane Deny
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:86
摘要

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample. However, a recurring issue with this approach is the existence of trivial constant solutions. Most current methods avoid such solutions by careful implementation details. We propose an objective function that naturally avoids collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. The method is called Barlow Twins, owing to neuroscientist H. Barlow's redundancy-reduction principle applied to a pair of identical networks. Barlow Twins does not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates. Intriguingly it benefits from very high-dimensional output vectors. Barlow Twins outperforms previous methods on ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for ImageNet classification with a linear classifier head, and for transfer tasks of classification and object detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MU发布了新的文献求助10
刚刚
兰真纯洁完成签到,获得积分10
刚刚
刚刚
刚刚
铁树发布了新的文献求助10
1秒前
李爱国应助洁净之卉采纳,获得30
1秒前
林子青发布了新的文献求助10
1秒前
郑zhenglanyou完成签到,获得积分10
1秒前
jimmy完成签到,获得积分10
2秒前
板凳完成签到 ,获得积分10
2秒前
yfy发布了新的文献求助10
2秒前
3秒前
英姑应助江心秋月采纳,获得10
3秒前
何寄灵发布了新的文献求助10
4秒前
兰真纯洁发布了新的文献求助10
4秒前
小刘完成签到,获得积分10
4秒前
4秒前
jasmineyy发布了新的文献求助10
4秒前
5秒前
善学以致用应助易寒采纳,获得10
5秒前
zho关闭了zho文献求助
6秒前
6秒前
wanci应助清秀千兰采纳,获得10
6秒前
潇湘夜雨完成签到,获得积分20
6秒前
情怀应助xiaoarui17采纳,获得10
6秒前
科研牛马完成签到,获得积分10
6秒前
一块巧克力完成签到,获得积分10
6秒前
6秒前
zjzyw完成签到 ,获得积分10
6秒前
yyy发布了新的文献求助10
6秒前
yatou5651完成签到,获得积分10
7秒前
尹天扬发布了新的文献求助20
7秒前
7秒前
yinzzzzzzz发布了新的文献求助10
8秒前
8秒前
柯飞扬发布了新的文献求助10
9秒前
Meowly发布了新的文献求助10
9秒前
lbt发布了新的文献求助10
10秒前
科研通AI5应助崔迎松采纳,获得10
10秒前
爱吃绿豆沙的热辣小妈完成签到 ,获得积分10
10秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816738
求助须知:如何正确求助?哪些是违规求助? 3360137
关于积分的说明 10406832
捐赠科研通 3078164
什么是DOI,文献DOI怎么找? 1690598
邀请新用户注册赠送积分活动 813910
科研通“疑难数据库(出版商)”最低求助积分说明 767889