Structural Health Monitoring on Urban Areas by Using Multi Temporal Insar and Deep Learning

计算机科学 深度学习 干涉合成孔径雷达 人工智能 合成孔径雷达 机器学习 地形 比例(比率) 遥感 地球观测 数据科学 数据挖掘 工程类 地质学 地理 航空航天工程 地图学 卫星
作者
Gabriel Martín,Sivasakthy Selvakumaran,Andrea Marinoni,Zahra Sadeghi,Campbell Middleton
标识
DOI:10.1109/igarss47720.2021.9554639
摘要

The recent advancements in machine learning techniques have opened the door for automatic large scale monitoring of the surface of the earth. For instance, they could be used in order to evaluate and assess civil infrastructures at scale, which is costly due to the fact that typically the existing methods rely on in-situ evaluation. Over the last decade Deep Learning technologies have risen as the state of the art methods for many different machine learning problems due to the fact that they can learn complex features and model complex non-linear behaviours. In this paper we will explore the possibility of using Deep Learning technologies over remote sensing data with the aim of structure health monitoring at scale. We will compare the performance of new Deep Learning technologies with regards to other traditional machine learning methods. For this purpose, we will use InSAR (Interferometry Synthetic Aperture Radar) data which allow us to measure cumulative surface displacement in the line of sight of the sensor with millimetric accuracy. We will analyse multi temporal InSAR data in order to model ground subsidence. In this paper we will discuss how deep learning technologies can learn to detect terrain subsidence over multi-temporal InSAR data automatically, providing much better results than traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
veeinne发布了新的文献求助10
1秒前
bhc186发布了新的文献求助10
2秒前
Ava应助空禅yew采纳,获得10
2秒前
66完成签到 ,获得积分10
3秒前
6秒前
7秒前
段采萱完成签到,获得积分10
7秒前
丘比特应助文静灵阳采纳,获得10
8秒前
你倒是发啊完成签到,获得积分10
11秒前
顾矜应助颖火虫采纳,获得10
12秒前
12秒前
茉莉发布了新的文献求助10
12秒前
我产物呢完成签到,获得积分10
14秒前
major发布了新的文献求助10
14秒前
单纯清完成签到,获得积分20
15秒前
文静灵阳发布了新的文献求助10
15秒前
大模型应助veeinne采纳,获得10
15秒前
默幻弦完成签到,获得积分10
16秒前
bkagyin应助yy采纳,获得10
17秒前
Echo发布了新的文献求助10
17秒前
17秒前
Maestro_S应助奕逸采纳,获得20
17秒前
19秒前
19秒前
茉莉完成签到,获得积分10
20秒前
夏夏夏完成签到,获得积分10
20秒前
YY发布了新的文献求助10
20秒前
21秒前
英俊的铭应助Ink采纳,获得10
21秒前
颖火虫完成签到,获得积分10
22秒前
ZeSheng完成签到,获得积分10
23秒前
你说发布了新的文献求助10
23秒前
24秒前
bodhi发布了新的文献求助10
25秒前
wy.he应助xc采纳,获得20
26秒前
27秒前
27秒前
闷油瓶完成签到,获得积分10
28秒前
田様应助你说采纳,获得30
30秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789592
求助须知:如何正确求助?哪些是违规求助? 3334534
关于积分的说明 10270460
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761