Tribological performance evaluation on brake friction material by using multi-objective optimization methods

制动器 多准则决策分析 摩擦学 实验设计 遗传算法 工程类 汽车工程 机械工程 数学 数学优化 统计 运筹学
作者
Hasan Öktem,Dinesh Shinde
出处
期刊:Industrial Lubrication and Tribology [Emerald Publishing Limited]
卷期号:73 (4): 599-605 被引量:6
标识
DOI:10.1108/ilt-11-2020-0395
摘要

Purpose The purpose of this study is to present a novel approach for the evaluation of tribological properties of brake friction materials (BFM). Design/methodology/approach In this study, a BFM was newly formulated with 16 different ingredients and produced using an industrial hot compression molding process. Experimentation was carried out on the brake tester, which was developed for this purpose according to SAE J661 standards. The braking applications, sliding speed and braking pressure were considered as performance parameters, whereas coefficient of friction (CoF) and wear rate as output parameters. The influence of the performance parameters on the output was studied using response surface plots. Analysis of variance and regression analysis was accomplished for post-experimental evaluation of results. Multi-criteria decision-making (MCDM) and multi-objective genetic algorithm (MOGA) were applied for estimating the most critical performance parameter combination to evaluate the BFM. Findings The present experimental model was significant and effectively used to predict the performance. MCDM generates the optimal values for the parameters braking applications, braking pressure (Bar) and sliding speed (rpm) as 1000, 30 and 915, whereas MOGA as 1008, 10.503 and 462.8202, respectively. Originality/value An efficient model for performance evaluation of the BFM considering maximum CoF and minimum wear rate was experimentally presented and statistically verified. Also, the two multi-objective optimization methodologies were implemented and compared. A comparison between the results of MCDM and MOGA reveals that MOGA yields 30% better results than MCDM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助lizi采纳,获得20
刚刚
Dr. Chen发布了新的文献求助10
2秒前
哪里有人发布了新的文献求助10
2秒前
hsy发布了新的文献求助10
3秒前
5秒前
JingjingWang发布了新的文献求助10
5秒前
善学以致用应助hsy采纳,获得10
6秒前
Mu完成签到,获得积分10
6秒前
jiangxxxx1完成签到,获得积分20
7秒前
8秒前
华仔应助神勇的怜寒采纳,获得10
10秒前
科目三应助cjj采纳,获得10
10秒前
FashionBoy应助cjj采纳,获得10
10秒前
乐乐应助cjj采纳,获得10
10秒前
小二郎应助cjj采纳,获得10
10秒前
脑洞疼应助cjj采纳,获得10
10秒前
852应助cjj采纳,获得10
10秒前
852应助cjj采纳,获得10
10秒前
打打应助cjj采纳,获得30
10秒前
高源发布了新的文献求助10
12秒前
LYH完成签到,获得积分10
14秒前
14秒前
不接组会完成签到 ,获得积分10
14秒前
斯文败类应助cjj采纳,获得10
15秒前
深情安青应助cjj采纳,获得10
15秒前
orixero应助cjj采纳,获得30
15秒前
SciGPT应助cjj采纳,获得10
15秒前
爆米花应助cjj采纳,获得10
16秒前
爆米花应助cjj采纳,获得10
16秒前
CodeCraft应助cjj采纳,获得10
16秒前
科研通AI5应助cjj采纳,获得10
16秒前
脑洞疼应助cjj采纳,获得10
16秒前
打打应助cjj采纳,获得10
16秒前
小二郎应助一念来回采纳,获得10
16秒前
16秒前
Kevin完成签到,获得积分10
16秒前
yy完成签到 ,获得积分10
18秒前
浮游应助此日无风采纳,获得10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196870
求助须知:如何正确求助?哪些是违规求助? 4378399
关于积分的说明 13636182
捐赠科研通 4233982
什么是DOI,文献DOI怎么找? 2322524
邀请新用户注册赠送积分活动 1320667
关于科研通互助平台的介绍 1271135