Development of distribution maps of spectrally similar degradation products by Raman chemical imaging microscope coupled with a new variable selection technique and SIMCA classifier

化学计量学 高光谱成像 化学成像 模式识别(心理学) 人工智能 分类器(UML) 生物系统 计算机科学 显微镜 主成分分析 材料科学 机器学习 光学 生物 物理
作者
Ahmed Abdelfattah Saleh,Maha A. Hegazy,Samah S. Abbas,Amira M. El-Kosasy
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:268: 120654-120654 被引量:4
标识
DOI:10.1016/j.saa.2021.120654
摘要

The ability to detect degradation products of active pharmaceutical ingredients (API) is an essential performance not only for conducting proper stability studies and subsequently gain regulatory approvals; but as well for detecting degradation products during the manufacturing process (In Process Control). Thus, this study aims to present the ability of using Raman Chemical Imaging (Raman-CI) microscope, with its optimum precision, in combination with appropriate chemometrics algorithms, to detect the spectrally similar Salicylic Acid (SA) in Acetylsalicylic Acid (ASA) powder mixture, and then create a chemical distribution map that reflects the distribution of ASA's main degradation product. The generated Hyperspectral images were processed where, a supervised chemometrics soft classifier, Soft Independent Modeling of Class Analogy (SIMCA), is applied to classify pixels and construct the subsequent distribution maps. In addition, due to the challenge of the high structural and spectral similarity between both substances, this study presents a new variable selection and dimensionality reduction technique, called Variable Strength Coefficient (VSC) to maximize the spectral differences and enhance the model precision and selectivity. A High-performance liquid chromatographic (HPLC) method was applied as a reference separation method to assess the results obtained by the proposed technique. The proposed technique was validated, where the obtained results confirmed that Raman Chemical Imaging Microscope, when coupled with SIMCA and VSC, is a powerful tool with outstanding accuracy. In addition, this approach could be suitable in applications where constructing accurate distribution maps of spectrally similar API's is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待盼雁发布了新的文献求助10
2秒前
3秒前
李健的小迷弟应助执执采纳,获得10
4秒前
舒适怀寒完成签到 ,获得积分10
5秒前
zhh完成签到,获得积分20
7秒前
风趣尔蓝完成签到,获得积分10
8秒前
9秒前
9秒前
胡萝卜icc完成签到,获得积分20
10秒前
10秒前
科研通AI5应助德坚采纳,获得10
14秒前
在水一方应助曲奇采纳,获得10
15秒前
GongSyi发布了新的文献求助10
15秒前
小元发布了新的文献求助10
15秒前
萤火虫发布了新的文献求助10
16秒前
虚心谷梦完成签到,获得积分10
17秒前
17秒前
HEAUBOOK应助时丶倾采纳,获得30
17秒前
相逢驳回了bc应助
23秒前
畅快枕头完成签到 ,获得积分10
23秒前
小胡发布了新的文献求助10
24秒前
jialin发布了新的文献求助10
25秒前
tsntn完成签到,获得积分10
27秒前
28秒前
111发布了新的文献求助10
33秒前
38秒前
领导范儿应助liang采纳,获得10
39秒前
里里要努力完成签到,获得积分10
43秒前
科研通AI5应助可爱的寻云采纳,获得10
44秒前
lily336699发布了新的文献求助10
44秒前
星辰大海应助尺八采纳,获得30
44秒前
科研通AI5应助扒开皮皮采纳,获得10
44秒前
45秒前
斯文败类应助负责的方盒采纳,获得10
46秒前
48秒前
小胡完成签到,获得积分20
48秒前
noss发布了新的文献求助10
52秒前
55秒前
liang发布了新的文献求助10
58秒前
懒懒洋洋洋完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323655
关于积分的说明 10215320
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339