准粒子
密度泛函理论
电子结构
统计物理学
物理
密度矩阵
操作员(生物学)
计算机科学
量子力学
量子
化学
超导电性
生物化学
转录因子
基因
抑制因子
作者
Nikolaj Rørbæk Knøsgaard,Kristian S. Thygesen
标识
DOI:10.1038/s41467-022-28122-0
摘要
Choosing optimal representation methods of atomic and electronic structures is essential when machine learning properties of materials. We address the problem of representing quantum states of electrons in a solid for the purpose of machine leaning state-specific electronic properties. Specifically, we construct a fingerprint based on energy decomposed operator matrix elements (ENDOME) and radially decomposed projected density of states (RAD-PDOS), which are both obtainable from a standard density functional theory (DFT) calculation. Using such fingerprints we train a gradient boosting model on a set of 46k G
科研通智能强力驱动
Strongly Powered by AbleSci AI