Deep learning for abdominal ultrasound: A computer-aided diagnostic system for the severity of fatty liver

医学 脂肪变性 脂肪肝 非酒精性脂肪肝 接收机工作特性 金标准(测试) 限制 内科学 超声波 放射科 诊断准确性 肝活检 胃肠病学 人工智能 活检 疾病 工程类 机械工程 计算机科学
作者
Tsung-Hsien Chou,Hsing‐Jung Yeh,Chun‐Chao Chang,Jui‐Hsiang Tang,Wei‐Yu Kao,I-Chia Su,Chien‐Hung Li,Wei-Hao Chang,Chun‐Kai Huang,Herdiantri Sufriyana,Emily Chia‐Yu Su
出处
期刊:Journal of The Chinese Medical Association [Lippincott Williams & Wilkins]
卷期号:84 (9): 842-850 被引量:31
标识
DOI:10.1097/jcma.0000000000000585
摘要

The prevalence of nonalcoholic fatty liver disease is increasing over time worldwide, with similar trends to those of diabetes and obesity. A liver biopsy, the gold standard of diagnosis, is not favored due to its invasiveness. Meanwhile, noninvasive evaluation methods of fatty liver are still either very expensive or demonstrate poor diagnostic performances, thus, limiting their applications. We developed neural network-based models to assess fatty liver and classify the severity using B-mode ultrasound (US) images.We followed standards for reporting of diagnostic accuracy guidelines to report this study. In this retrospective study, we utilized B-mode US images from a consecutive series of patients to develop four-class, two-class, and three-class diagnostic prediction models. The images were eligible if confirmed by at least two gastroenterologists. We compared pretrained convolutional neural network models, consisting of visual geometry group (VGG)19, ResNet-50 v2, MobileNet v2, Xception, and Inception v2. For validation, we utilized 20% of the dataset resulting in >100 images for each severity category.There were 21,855 images from 2,070 patients classified as normal (N = 11,307), mild (N = 4,467), moderate (N = 3,155), or severe steatosis (N = 2,926). We used ResNet-50 v2 for the final model as the best ones. The areas under the receiver operating characteristic curves were 0.974 (mild steatosis vs others), 0.971 (moderate steatosis vs others), 0.981 (severe steatosis vs others), 0.985 (any severity vs normal), and 0.996 (moderate-to-severe steatosis/clinically abnormal vs normal-to-mild steatosis/clinically normal).Our deep learning models achieved comparable predictive performances to the most accurate, yet expensive, noninvasive diagnostic methods for fatty liver. Because of the discriminative ability, including for mild steatosis, significant impacts on clinical applications for fatty liver are expected. However, we need to overcome machine-dependent variation, motion artifacts, lacking of second confirmation from any other tools, and hospital-dependent regional bias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
5秒前
5秒前
李家兴完成签到,获得积分10
6秒前
6秒前
6秒前
缓慢的开山完成签到 ,获得积分10
6秒前
7秒前
hy完成签到,获得积分10
7秒前
倒立才能看文献完成签到,获得积分10
7秒前
wzq完成签到 ,获得积分20
7秒前
ccc发布了新的文献求助10
7秒前
7秒前
星点发布了新的文献求助10
8秒前
CC发布了新的文献求助10
8秒前
lllllll发布了新的文献求助10
8秒前
July发布了新的文献求助10
9秒前
李家兴发布了新的文献求助10
9秒前
执着怜珊完成签到 ,获得积分10
9秒前
xu发布了新的文献求助10
9秒前
yu完成签到,获得积分20
10秒前
王赟晖完成签到,获得积分10
11秒前
胖子左右完成签到,获得积分10
11秒前
6a完成签到 ,获得积分10
11秒前
13秒前
落尘发布了新的文献求助10
13秒前
王赟晖发布了新的文献求助10
13秒前
13秒前
swetcol发布了新的文献求助20
14秒前
SciGPT应助june采纳,获得10
14秒前
烟花应助ccc采纳,获得10
14秒前
麻辣香锅完成签到,获得积分20
15秒前
希望天下0贩的0应助CC采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5039834
求助须知:如何正确求助?哪些是违规求助? 4271491
关于积分的说明 13317309
捐赠科研通 4083342
什么是DOI,文献DOI怎么找? 2234036
邀请新用户注册赠送积分活动 1241688
关于科研通互助平台的介绍 1168211