Magnetically propelled soft microrobot navigating through constricted microchannels

纳米技术 材料科学 机械工程 机械 物理 工程类
作者
Jinrun Liu,Shimin Yu,Borui Xu,Ziao Tian,Hehua Zhang,Kaipeng Liu,Xiaojie Shi,Zhe Zhao,Chang Liu,Xinyi Lin,Gaoshan Huang,Alexander A. Solovev,Jizhai Cui,Tianlong Li,Yongfeng Mei
出处
期刊:Applied Materials Today [Elsevier]
卷期号:25: 101237-101237 被引量:34
标识
DOI:10.1016/j.apmt.2021.101237
摘要

• Soft helical microrobots were fabricated using a microfluidic strategy. • Mechanical property can be tuned by adjusting material composition and post ion solution treatment. • The soft microrobot can actively pass through narrow and sinuous microchannels by adaptive deformation. • The soft microrobot exhibits unique tightening when swimming in viscous liquids. Recent strides in microfabrication technologies offer important possibilities for developing microscale robotic systems with enhanced power, functionality and versatility. Previous microrobots fabricated by lithographic techniques usually lack the ability to adaptively deform in confined and constricted spaces and navigate through, therefore hindering their applications in complex biological environments. Here, a microfluidic strategy is combined with a dip-coating process for continuous fabrication of soft helical structures with controllable mechanical property as magnetically propelled microrobots, capable of actively propelling through narrow and sinuous microchannels. Because of their self-adaptive deformation capability, the magnetically propelled soft microrobots can actively navigate through a narrow opening, 2.21 times smaller than the sectional area of the microrobot, and a U-shape-bent capillary, directed by a programmed magnetic field. Additionally, the soft microrobot demonstrates increased swimming speed in a fluid of high viscosity, because of the adaptive tightening deformation of the helix when swimming. This new magnetically propelled soft microrobot and its attractive performance will open up new possibilities for biomedical operation at the micro and nanoscale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野酒窝发布了新的文献求助10
刚刚
大模型应助2633148059采纳,获得10
1秒前
1秒前
ChemHu发布了新的文献求助10
1秒前
聪明薯片发布了新的文献求助10
1秒前
小二郎应助鱼的宇宙采纳,获得10
1秒前
拼搏的黑夜完成签到,获得积分20
2秒前
Ilan发布了新的文献求助200
2秒前
2秒前
2秒前
优秀元枫完成签到,获得积分10
2秒前
燕燕于飞发布了新的文献求助10
4秒前
4秒前
卡皮巴拉完成签到,获得积分20
5秒前
充电宝应助研友_enP05n采纳,获得10
6秒前
6秒前
狂野酒窝完成签到,获得积分10
6秒前
6秒前
何东旭发布了新的文献求助10
6秒前
NexusExplorer应助勤恳的一斩采纳,获得10
7秒前
完美世界应助酷酷的半凡采纳,获得10
7秒前
8秒前
FIGMA发布了新的文献求助10
8秒前
积极冷霜完成签到,获得积分10
9秒前
搜集达人应助ccq采纳,获得10
9秒前
maclogos发布了新的文献求助10
9秒前
酷波er应助兴奋的万声采纳,获得10
9秒前
润之发布了新的文献求助20
9秒前
量子星尘发布了新的文献求助10
9秒前
飞燕草完成签到 ,获得积分10
9秒前
852应助心灵美亦寒采纳,获得10
10秒前
11秒前
11秒前
ssllmm完成签到,获得积分10
11秒前
无花果应助hanyangyang采纳,获得10
11秒前
科研诸葛亮完成签到,获得积分10
12秒前
蛋蛋完成签到,获得积分10
12秒前
烟雾里发布了新的文献求助10
12秒前
12秒前
无花果应助义气的子默采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5748626
求助须知:如何正确求助?哪些是违规求助? 5454439
关于积分的说明 15361500
捐赠科研通 4888208
什么是DOI,文献DOI怎么找? 2628298
邀请新用户注册赠送积分活动 1576762
关于科研通互助平台的介绍 1533564