Improved breast cancer histological grading using deep learning

医学 危险系数 分级(工程) 组织病理学 比例危险模型 置信区间 危险分层 乳腺癌 回顾性队列研究 观察研究 肿瘤科 癌症 内科学 病理 工程类 土木工程
作者
Yinxi Wang,Balázs Ács,Stephanie Robertson,B. Liu,Leslie Solorzano,Carolina Wählby,Johan Hartman,Mattias Rantalainen
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:33 (1): 89-98 被引量:120
标识
DOI:10.1016/j.annonc.2021.09.007
摘要

The Nottingham histological grade (NHG) is a well-established prognostic factor for breast cancer that is broadly used in clinical decision making. However, ∼50% of patients are classified as grade 2, an intermediate risk group with low clinical value. To improve risk stratification of NHG 2 breast cancer patients, we developed and validated a novel histological grade model (DeepGrade) based on digital whole-slide histopathology images (WSIs) and deep learning.In this observational retrospective study, routine WSIs stained with haematoxylin and eosin from 1567 patients were utilised for model optimisation and validation. Model generalisability was further evaluated in an external test set with 1262 patients. NHG 2 cases were stratified into two groups, DG2-high and DG2-low, and the prognostic value was assessed. The main outcome was recurrence-free survival.DeepGrade provides independent prognostic information for stratification of NHG 2 cases in the internal test set, where DG2-high showed an increased risk for recurrence (hazard ratio [HR] 2.94, 95% confidence interval [CI] 1.24-6.97, P = 0.015) compared with the DG2-low group after adjusting for established risk factors (independent test data). DG2-low also shared phenotypic similarities with NHG 1, and DG2-high with NHG 3, suggesting that the model identifies morphological patterns in NHG 2 that are associated with more aggressive tumours. The prognostic value of DeepGrade was further assessed in the external test set, confirming an increased risk for recurrence in DG2-high (HR 1.91, 95% CI 1.11-3.29, P = 0.019).The proposed model-based stratification of patients with NHG 2 tumours is prognostic and adds clinically relevant information over routine histological grading. The methodology offers a cost-effective alternative to molecular profiling to extract information relevant for clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXSCI发布了新的文献求助10
2秒前
慕青应助psj采纳,获得10
4秒前
5秒前
左丘冥发布了新的文献求助10
8秒前
顾矜应助田俊采纳,获得10
8秒前
wang5945发布了新的文献求助10
8秒前
清一完成签到,获得积分10
10秒前
11秒前
12秒前
15秒前
qianshu发布了新的文献求助10
16秒前
16秒前
17秒前
LXSCI完成签到,获得积分10
17秒前
Tian完成签到,获得积分10
17秒前
17秒前
Hello应助左丘冥采纳,获得10
20秒前
南瓜气气发布了新的文献求助10
21秒前
psj发布了新的文献求助10
22秒前
黄石发布了新的文献求助10
22秒前
scm应助安详尔岚采纳,获得30
23秒前
百香果bxg完成签到 ,获得积分10
26秒前
科研通AI5应助黄石采纳,获得10
31秒前
科研通AI5应助TT采纳,获得10
32秒前
34秒前
35秒前
下午好完成签到 ,获得积分10
36秒前
37秒前
科研通AI5应助糟糕的代芙采纳,获得10
39秒前
隐形曼青应助科研通管家采纳,获得10
39秒前
39秒前
猪猪hero应助科研通管家采纳,获得10
39秒前
40秒前
GG发布了新的文献求助10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
华仔应助科研通管家采纳,获得10
40秒前
赘婿应助科研通管家采纳,获得10
40秒前
木雨发布了新的文献求助30
40秒前
彭于晏应助科研通管家采纳,获得10
40秒前
li完成签到,获得积分10
40秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799219
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322248
捐赠科研通 3061362
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806929
科研通“疑难数据库(出版商)”最低求助积分说明 763451