Multimodal Topic Detection in Social Networks with Graph Fusion

计算机科学 人工智能 图形 社交网络(社会语言学) 聚类分析 社会化媒体 机器学习 模式识别(心理学) 注意力网络
作者
Yuhao Zhang,Kehui Song,Xiangrui Cai,Yierxiati Tuergong,Ling Yuan,Ying Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 28-38
标识
DOI:10.1007/978-3-030-87571-8_3
摘要

Social networks have become a popular way for Internet users to express their thoughts and exchange real-time information. The increasing number of topic-oriented resources in social networks has drawn more and more attention, leading to the development of topic detection. Topic detection of pure texts originates from text mining and document clustering, aiming to automatically identify topics from massive data in an unsupervised manner. With the development of mobile Internet, user-generated content in social networks usually contains multimodal data, such as images, videos, etc. Multimodal topic detection poses a new challenge of fusing and aligning heterogeneous features from different modalities, which has received limited attention in existing research studies. To address this problem, we adopt a Graph Fusion Network (GFN) based encoder and a multilayer perceptron (MLP) decoder to hierarchically fuse information from images and texts. The proposed method regards multimodal features as vertices and models the interactions between modalities with edges layer by layer. Therefore, the fused representations contain rich semantic information and explicit multimodal dynamics, which are beneficial to improve the performance of multimodal topic detection. Experimental results on the real-world multimodal topic detection dataset demonstrate that our model performs favorably against all the baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科目三应助谦让的冰海采纳,获得10
1秒前
1秒前
例外完成签到,获得积分20
2秒前
隐形曼青应助陌路孤星采纳,获得10
2秒前
3秒前
淡淡代玉发布了新的文献求助10
4秒前
bkagyin应助笑嘻嘻采纳,获得10
5秒前
5秒前
Ezio_sunhao完成签到,获得积分10
5秒前
6秒前
6秒前
啊伟发布了新的文献求助10
6秒前
大家好车架号h完成签到,获得积分10
7秒前
xl发布了新的文献求助50
7秒前
7秒前
All发布了新的文献求助10
7秒前
7秒前
7秒前
等春树完成签到 ,获得积分10
8秒前
smottom应助科研通管家采纳,获得30
8秒前
8秒前
bkagyin应助盼盼采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
可可应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
博雅雅雅雅雅完成签到,获得积分10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
MchemG应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
苏卿应助科研通管家采纳,获得30
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Hann发布了新的文献求助10
9秒前
很大一个渊完成签到,获得积分20
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974358
求助须知:如何正确求助?哪些是违规求助? 3518706
关于积分的说明 11195521
捐赠科研通 3254897
什么是DOI,文献DOI怎么找? 1797614
邀请新用户注册赠送积分活动 877011
科研通“疑难数据库(出版商)”最低求助积分说明 806128