经济
匹配(统计)
定量配给
微观经济学
福利
付款
价值(数学)
资源配置
产量(工程)
挤出效应
实证研究
机制(生物学)
拥挤
计量经济学
公共经济学
计算机科学
宏观经济学
医疗保健
财务
数学
材料科学
冶金
市场经济
神经科学
经济增长
机器学习
生物
哲学
统计
认识论
作者
Valentin Verdier,Carson Reeling
标识
DOI:10.1093/restud/rdab048
摘要
Abstract Allocating resources without monetary payments is expected to yield inefficient allocations. Theory suggests that introducing rationing when resources are allocated repeatedly over time can mitigate this issue, while the magnitude of the resulting efficiency gains is an empirical question in most settings. We study a dynamic assignment mechanism used by the Michigan Department of Natural Resources to allocate bear hunting licenses and find that it yields a more efficient allocation than static mechanisms, allocating participants to types of resources for which they have a higher value without crowding out participants with a high overall value for hunting. Our empirical analysis also highlights the importance of heterogeneity across participants and across allocated resources for determining the efficiency of a dynamic allocation mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI