色谱法
化学
萃取(化学)
检出限
分析物
样品制备
磺胺美拉嗪
高效液相色谱法
微流控
固相萃取
磺胺嘧啶
纳米技术
材料科学
生物化学
抗生素
作者
Samira Dowlatshah,Elia Santigosa,Mohammad Saraji,María Ramos‐Payán
标识
DOI:10.1016/j.chroma.2021.462344
摘要
Liquid phase microextraction (LPME) into a microfluidic has undergone great advances focused on downscaled and miniaturized devices. In this work, a microfluidic device was developed for the extraction of sulfonamides in order to accelerate the mass transfer and passive diffusion of the analytes from the donor phase to the acceptor phase. The subsequent analysis was carried out by high performance liquid chromatography with UV-DAD (HPLC-DAD). Several parameters affecting the extraction efficiency of the method such as the supported liquid membrane, composition of donor and acceptor phase and flow rate were investigated and optimized. Tributyl phosphate was found to be a good supported liquid membrane which confers not only great affinity for analytes but also long-term stability, allowing more than 20 consecutive extractions without carry over effect. Under optimum conditions, extraction efficiencies were over 96 % for all sulfonamides after 10 minutes extraction and only 10 µL of sample was required. Relative standard deviation was between 3-5 % for all compounds. Method detection limits were 45, 57, 54 and 33 ng mL−1 for sulfadiazine (SDI), sulfamerazine (SMR), sulfamethazine (SMT) and sulfamethoxazole (SMX), respectively. Quantitation limits were 0.15, 0.19, 0.18 and 0.11 µg mL−1 for SDI, SMR, SMT SMX, respectively. The proposed microfluidic device was successfully applied for the determination of sulfonamides in urine samples with extraction efficiencies within the range of 86-106 %. The proposed method improves the procedures proposed to date for the determination of sulfonamides in terms of efficiency, reduction of the sample volume and extraction time.
科研通智能强力驱动
Strongly Powered by AbleSci AI