Accurate Multivariate Stock Movement Prediction via Data-Axis Transformer with Multi-Level Contexts

库存(枪支) 计算机科学 股票市场 计量经济学 多元统计 竞争对手分析 金融市场 变压器 人工智能 机器学习 经济 财务 背景(考古学) 工程类 地理 电气工程 机械工程 电压 考古 管理
作者
Jaemin Yoo,Yejun Soun,Yong-chan Park,U Kang
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 2037-2045 被引量:88
标识
DOI:10.1145/3447548.3467297
摘要

How can we efficiently correlate multiple stocks for accurate stock movement prediction? Stock movement prediction has received growing interest in data mining and machine learning communities due to its substantial impact on financial markets. One way to improve the prediction accuracy is to utilize the correlations between multiple stocks, getting a reliable evidence regardless of the random noises of individual prices. However, it has been challenging to acquire accurate correlations between stocks because of their asymmetric and dynamic nature which is also influenced by the global movement of a market. In this work, we propose DTML (Data-axis Transformer with Multi-Level contexts), a novel approach for stock movement prediction that learns the correlations between stocks in an end-to-end way. DTML makes asymmetric and dynamic correlations by a) learning temporal correlations within each stock, b) generating multi-level contexts based on a global market context, and c) utilizing a transformer encoder for learning inter-stock correlations. DTML achieves the state-of-the-art accuracy on six datasets collected from various stock markets from US, China, Japan, and UK, making up to 13.8%p higher profits than the best competitors and the annualized return of 44.4% on investment simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激情的纲完成签到,获得积分10
2秒前
李健的小迷弟应助桀桀桀采纳,获得10
2秒前
飞云发布了新的文献求助10
2秒前
李禾研完成签到,获得积分10
3秒前
4秒前
健壮的翎完成签到,获得积分10
4秒前
zkq完成签到,获得积分10
5秒前
yuyuxiaoyu给yuyuxiaoyu的求助进行了留言
5秒前
jouholly完成签到,获得积分10
5秒前
Jidekxin完成签到,获得积分20
5秒前
Cherish完成签到,获得积分10
6秒前
感恩的心完成签到,获得积分10
6秒前
6秒前
white完成签到,获得积分10
6秒前
7秒前
7秒前
song发布了新的文献求助10
7秒前
7秒前
学术蝗虫发布了新的文献求助10
9秒前
9秒前
9秒前
lhaoran发布了新的文献求助10
9秒前
9秒前
细腻小蜜蜂完成签到,获得积分20
9秒前
10秒前
路飞发布了新的文献求助10
10秒前
花溪发布了新的文献求助10
11秒前
天天快乐应助刘腾采纳,获得10
11秒前
ding应助有魅力的电脑采纳,获得10
11秒前
Crazy_Runner发布了新的文献求助10
12秒前
俊秀的秀发完成签到 ,获得积分10
13秒前
13秒前
沙漠水发布了新的文献求助10
14秒前
gaoyunfeng发布了新的文献求助10
14秒前
科研通AI5应助猪猪hero采纳,获得10
14秒前
14秒前
152522完成签到,获得积分20
14秒前
科研1发布了新的文献求助10
15秒前
一碘碘Q完成签到,获得积分10
15秒前
搜集达人应助饱满冥茗采纳,获得10
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838196
求助须知:如何正确求助?哪些是违规求助? 3380471
关于积分的说明 10514526
捐赠科研通 3100044
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821625
科研通“疑难数据库(出版商)”最低求助积分说明 772816