Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models

多元自适应回归样条 过度拟合 机器学习 克里金 人工智能 人工神经网络 计算机科学 支持向量机 替代模型 预测建模 高斯过程 线性回归 火星探测计划 数据挖掘 贝叶斯多元线性回归 高斯分布 物理 量子力学 天文
作者
Panagiotis G. Asteris,Athanasia D. Skentou,Abidhan Bardhan,Pijush Samui,Kypros Pilakoutas
出处
期刊:Cement and Concrete Research [Elsevier]
卷期号:145: 106449-106449 被引量:527
标识
DOI:10.1016/j.cemconres.2021.106449
摘要

This study aims to implement a hybrid ensemble surrogate machine learning technique in predicting the compressive strength (CS) of concrete, an important parameter used for durability design and service life prediction of concrete structures in civil engineering projects. For this purpose, an experimental database consisting of 1030 records has been compiled from the machine learning repository of the University of California, Irvine. The database was used to train and validate four conventional machine learning (CML) models, namely Artificial Neural Network (ANN), Linear and Non-Linear Multivariate Adaptive Regression Splines (MARS-L and MARS-C), Gaussian Process Regression (GPR), and Minimax Probability Machine Regression (MPMR). Subsequently, the predicted outputs of CML models were combined and trained using ANN to construct the Hybrid Ensemble Model (HENSM). It is observed that the proposed HENSM produces higher predictive accuracy compared to the CML models used in the present study. The predictive performance of all models for CS prediction was compared using the testing dataset and it is found that the HENSM model attained the highest predictive accuracy in both phases. Based on the experimental results, the newly constructed HENSM model is very potential to be a new alternative in handling the overfitting issues of CML models and hence, can be used to predict the concrete CS, including the design of less polluting and more sustainable concrete constructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安安发布了新的文献求助10
刚刚
1秒前
科研通AI6应助悟空最可爱采纳,获得10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
啦啦啦完成签到,获得积分10
4秒前
所所应助LMH采纳,获得10
5秒前
6秒前
废废废完成签到,获得积分10
6秒前
8秒前
10秒前
10秒前
传奇3应助硕心采纳,获得10
11秒前
顾矜应助michaelxia采纳,获得10
11秒前
11211完成签到,获得积分20
12秒前
12秒前
35413854关注了科研通微信公众号
12秒前
Young_kristine完成签到,获得积分10
13秒前
14秒前
丘比特应助RigdzinGyal采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
LMH发布了新的文献求助10
17秒前
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532543
求助须知:如何正确求助?哪些是违规求助? 4621304
关于积分的说明 14577464
捐赠科研通 4561132
什么是DOI,文献DOI怎么找? 2499202
邀请新用户注册赠送积分活动 1479089
关于科研通互助平台的介绍 1450376