Parallel and Distributed Structured SVM Training

计算机科学 加速 支持向量机 趋同(经济学) 同步(交流) 利用 集合(抽象数据类型) 机器学习 人工智能 解析 并行计算 算法 经济增长 计算机安全 频道(广播) 经济 程序设计语言 计算机网络
作者
Jiantong Jiang,Zeyi Wen,Zeke Wang,Bingsheng He,Jian Chen
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (5): 1084-1096 被引量:8
标识
DOI:10.1109/tpds.2021.3101155
摘要

Structured Support Vector Machines (structured SVMs) are a fundamental machine learning algorithm, and have solid theoretical foundation and high effectiveness in applications such as natural language parsing and computer vision. However, training structured SVMs is very time-consuming, due to the large number of constraints and inferior convergence rates, especially for large training data sets. The high cost of training structured SVMs has hindered its adoption to new applications. In this article, we aim to improve the efficiency of structured SVMs by proposing a parallel and distributed solution (namely FastSSVM ) for training structured SVMs building on top of MPI and OpenMP. FastSSVM exploits a series of optimizations (e.g., optimizations on data storage and synchronization) to efficiently use the resources of the nodes in a cluster and the cores of the nodes. Moreover, FastSSVM tackles the large constraint set problem by batch processing and addresses the slow convergence challenge by adapting stop conditions based on the improvement of each iteration. We theoretically prove that our solution is guaranteed to converge to a global optimum. A comprehensive experimental study shows that FastSSVM can achieve at least four times speedup over the existing solutions, and in some cases can achieve two to three orders of magnitude speedup.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ice_zhao完成签到,获得积分10
2秒前
3秒前
小肥羊发布了新的文献求助10
4秒前
卡奇Mikey完成签到,获得积分10
6秒前
lemonade完成签到,获得积分10
7秒前
王新彤完成签到,获得积分10
9秒前
大灰机小灰机完成签到,获得积分10
9秒前
斯文败类应助一树面包人采纳,获得10
11秒前
CodeCraft应助ZZZZZ采纳,获得10
11秒前
12秒前
12秒前
lemonade发布了新的文献求助10
13秒前
14秒前
科研路一直绿灯完成签到,获得积分10
16秒前
幽悠梦儿发布了新的文献求助10
16秒前
温婉的勒完成签到,获得积分10
17秒前
charry发布了新的文献求助10
17秒前
XJY发布了新的文献求助20
17秒前
苽峰发布了新的文献求助10
18秒前
求知若渴完成签到,获得积分10
18秒前
18秒前
18秒前
爱新觉罗朱完成签到,获得积分10
19秒前
19秒前
占瑾瑜发布了新的文献求助10
19秒前
21秒前
21秒前
CodeCraft应助xixima采纳,获得10
22秒前
丸子完成签到,获得积分10
22秒前
酚酞v发布了新的文献求助10
22秒前
23秒前
乐乐发布了新的文献求助10
23秒前
25秒前
25秒前
oydent完成签到,获得积分10
26秒前
西门艳丶发布了新的文献求助10
26秒前
xxxgoldxsx完成签到,获得积分10
26秒前
十三月完成签到,获得积分10
27秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742